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Summary

Fighter pilots commonly use simulators to practice their required tactics, techniques and proced-
ures. The training may involve computer-generated forces controlled by predefined behaviour
models. Such behaviour models are typically manually crafted by eliciting knowledge from
experienced pilots and take a long time to develop. Nonetheless, these behaviour models
generally fall short due to their predictable nature and lack of adaptivity, and the instructors
must spend time manually monitoring and controlling aspects of these forces. However, recent
advances in artificial intelligence (Al) research have developed methods capable of producing
intelligent agents that beat expert human players in complex games such as Go and StarCraft II.

Similarly, one may use methods from Al to compose advanced behaviour models for air combat,
allowing the instructors to focus more on the pilots’ training progression rather than manually
controlling their opponents and teammates. Such intelligent behaviour must perform realistically
and follow the correct military doctrines to prove useful for pilot training. One possible way of
achieving this is through imitation learning, a machine learning (ML) type where agents learn to
imitate examples given by expert pilots.

This report summarizes work on optimizing air combat behaviour models using an imitation
learning technique. These behaviour models are expressed as behaviour transition networks
(BTNs) controlling the computer-generated forces, simulated by the Next Generation Threat
System (NGTS), a military simulation application aimed mainly toward the air domain. An adapted
version of the genetic algorithm Neuroevolution of Augmenting Topologies (NEAT) optimizes
the BTNs to behave similarly to demonstrations of pilot behaviour. As with most ML methods,
NEAT requires many consecutive behaviour simulations to yield satisfying solutions. NGTS is
not designed for ML purposes, so a system was developed around NGTS that automatically
handles simulation and data management and controls the optimization process.

A set of experiments were performed in which the developed ML system optimized BTNs to
imitate example behaviours across three simple air combat scenarios. The experiments show
that the adapted version of NEAT (BTN-NEAT) produces BTNs that successfully imitate simple
demonstrations. However, the optimization process took considerable time, up to 44 hours of
computation or 92 days of simulated flight time. The slow optimization was mainly influenced by
NGTS’s inability to run fast while remaining reliable. This reliability issue is caused by NGTS’s
lack of time management, which would have associated the agents’ states with simulation
time stamps. To achieve successful behaviour optimization with more complex scenarios and
demonstrations, one should simulate the behaviours much faster than in real-time with high
reliability. Therefore, we consider NGTS not to be well-suited for future ML work. Instead, a
lightweight air combat simulation designed for ML purposes capable of running fast and reliably
is needed.
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Sammendrag

Kampflypiloter trener på taktikker, teknikker og prosedyrer ved hjelp av simulatorer. Der inngår
datagenererte styrker med forhåndsbestemte oppførsler. Å utvikle slike oppførsler er omfat-
tende. Tradisjonelt lages de for hånd, i tett samarbeid med erfarne piloter. Dessverre har de
resulterende modellene ofte svakheter, for eksempel ved at de framstår forutsigbare eller er
lite tilpasningsdyktige. Slike problemer gjør at simulatorinstruktørene blir nødt til å følge opp
og kontrollere aspekter ved de datagenererte styrkene manuelt. Simulatorinstruktørene bør
avlastes fra denne jobben, slik at de best mulig kan bidra til at pilotene tilegner seg nødvendige
ferdigheter.

Behovet for denne typen støtte har ført til en økning av forskningsaktiviteter knyttet til modellering
av luftstridsoppførsel. Nylige framskritt innenfor kunstig intelligens har bidratt med metoder som
gjør agenter i stand til å spille komplekse spill som Go og StarCraft II. Slike metoder kan også
brukes til å lære avansert kampflyoppførsel, til bruk i simuleringsbasert trening. Likevel må
kunstige, intelligente piloter være nyttige. I så måte må de kunne opptre realistisk, og i tråd med
militær doktrine. Dette krever at de er i stand til å etterligne ekspertoppførsel.

Denne rapporten oppsummerer arbeid knyttet til imiteringslæring for luftstridsoppførsel ved
bruk av Next Generation Threat System (NGTS), som er et simuleringssystem med særlig
vekt på luftdomenet. Oppførselsmodellene er uttrykt som oppførselstransisjonsnettverk (BTN).
For å optimalisere dem ble en tilpasset utgave av den genetiske algoritmen Neuroevolution of
Augmenting Topologies (NEAT) benyttet. Den fikk navnet BTN-NEAT. På lik linje med andre
maskinlæringsmetoder krever NEAT at mange oppførsler simuleres og evalueres, for å kunne
finne gode løsninger. NGTS er ikke rettet spesifikt mot maskinlæringsformål. Derfor ble det
utviklet et eget maskinlæringssystem som kobler sammen simulering, oppførselsmodeller og
optimaliseringsmetode.

Maskinlæringssystemet ble benyttet i eksperimenter med utgangspunkt i tre enkle luftkampscen-
arioer. I disse eksperimentene lærte agenter å handle i tråd med demonstrert oppførsel, ved å
bruke imiteringslæring. BTN-NEAT lyktes i å lage BTN-er som etterlikner demonstrasjonene,
selv om læringsprosessen krevde mer tid enn antatt. Årsaken er at NGTS ikke kan kjøre raskt,
og samtidig gi pålitelige data. Det tok opp mot 44 timer med beregning å lære egnede oppførsler.
Det tilsvarer 92 dager med simulert flytid. Eksperimentene avslørte at NGTS har svakheter knyttet
til tidsstyring. Det gjør simuleringssystemet lite attraktivt i videre arbeid knyttet til modellering
av luftstridsoppførsel med kunstig intelligens. I stedet er det behov for å utvikle en enkel og
beregningsmessig hurtig luftstridssimulering til bruk for maskinlæring.
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1 Introduction

Fighter pilots learn and maintain their tactical skills through rigorous training. A considerable
amount of the training is simulation-based, during which trainees face friendly and opposing forces
that should preferably behave in a manner that accelerates training and builds desired competence.
Computer-generated forces (CGFs), which are autonomous, computer-controlled entities, are used
to play the role of these friendly and opposing forces. Ideally, using CGFs in simulation-based
training should provide benefits such as increasing training availability for pilots and reducing
the need to involve subject matter experts (SMEs) during training. However, manually modelling
CGF behaviours sufficiently representative for the instructional role is tedious and has proven
challenging. As a result, current handcrafted behaviour models are often predictable, fail to adapt
to new situations or behave realistically concerning military doctrines, tactics, techniques, and
procedures (TTP). Maintaining a realistic experience in simulation-based air combat training is
crucial to ensure that trainees attain the necessary skills. Still, since the performance and behaviour
of CGFs are considered inadequate, SMEs tend to micromanage the CGFs during training sessions,
which is unfortunate since SMEs are costly, their time is valuable, and their numbers are limited.

Recent advances in AI research have developed methods capable of producing intelligent agents
that beat expert human players in complex games such as Go [1] and StarCraft II [2]. With these
advances, learning instructive and adaptive agent behaviour for air combat has become a growing
research field of interest. However, in order to be useful, the pilots’ simulated opponents and allies
must behave realistically and in line with military doctrines, as opposed to, e.g. attempting to win an
engagement at any cost. Several contributions in the research field focus on reinforcement learning
approaches, and some promising results have been shown. However, even with careful design of
objective functions, reinforcement learning agents risk learning policies that are suboptimal for
use in pilot training, meaning they act differently from what is expected according to established
doctrine and TTP. An alternative approach is to provide ML algorithms with expert demonstrations
from which they can extract pilot-specific knowledge and integrate this into the behaviour models
used by agents. To our knowledge, little or no prior research has explored this approach in the air
combat domain.

This report presents work in which an imitation learning algorithm based on the Darwinian
principles of natural selection is used to produce air combat behaviour models expressed as
behaviour transition networks (BTNs). While BTNs have appeared in prior work related to air
combat behaviour modelling using reinforcement learning, this work investigates whether BTNs
are suitable for imitation learning. Next Generation Threat System (NGTS) is used to simulate the
BTNs, and assessments are made to consider the suitability of this simulation system for machine
learning (ML). An ML system has been developed, comprising the tools and methods needed to
successfully produce air fighter agents using NGTS and the selected learning algorithm. This ML
system automatically handles simulation and data management and controls the learning algorithm.
Simple air combat scenarios were defined and used in a series of experiments conducted using this
ML system where BTNs that reflect demonstrated pilot behaviour were produced.

A few delimitations are made to limit the scope of the work. The ML system developed is not
production grade but rather a proof of concept. Thus, the scenarios and pilot demonstrations used
in the experiments are kept simple. Specifically, these are one vs one scenarios with demonstrations
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restricted to movement in two-dimensional space. Further, the behaviour demonstrations are based
on BTNs hand-crafted by the report authors, not by professional pilots.

This report is intended for researchers working on topics related to military training and AI,
preferably with knowledge of air combat and behaviour modelling, and is organized as follows.
Chapter 2 presents the background for the work, covering concepts relevant to air combat training
and simulation, artificial intelligence theory, and related work. Chapter 3 covers the selected
learning algorithm used in the experiments and its configurations, while Chapter 4 presents the
processes and tools that make up the ML system. Chapters 5 and 6 review the setup and execution
of the experiments by defining air combat scenarios and behaviour demonstrations and presenting
the results. These results, as well as the performance of the ML system and NGTS, are discussed in
chapter 7. Chapter 8 brings the report to a close with concluding remarks and thoughts on future
work.
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2 Background

This chapter outlines background information related to the research documented in this report.
The first part introduces the application domain of fighter pilot training, specifically fighter pilot
simulation-based training. For simulation-based fighter pilot training, a simulation system must
provide a synthetic environment, including the simulation of adversaries and own forces. Elements
of such a synthetic environment are covered, including the process typically employed today for
modelling these entities’ behaviours. Next Generation Threat System, which is used in this study, is
an example of a simulation system that provides such a synthetic environment. NGTS is briefly
introduced, including how the system expresses behaviour models of entities using BTNs. Since
this work studies ML as an alternative to the traditional behaviour modelling process, the chapter
also covers general ML concepts and specific ML methods and tools relevant to this work. The
chapter also covers software virtualization and containerization tools, which can help automate and
parallelize simulations. Lastly, a section on related work brings the chapter to a close.

2.1 Simulation-based fighter pilot training

Fighter pilots must perform a comprehensive annual continuation training programme to stay
combat-ready. Strict requirements for the number of flying hours are in place. Although parts
of the training programme, such as emergency procedures training, have long been fulfilled
using simulators, simulator-based training has come to make up a much larger part of training in
recent years. Due to cost, time, operation security, air space restrictions, safety regulations, and
environmental and climate considerations, simulators are expected to replace live training to an even
larger extent in the coming years. This trend is enabled by developments in simulation technologies,
including realistic synthetic environments and the ability to network simulators so that larger forces
can be trained. Thus today, a full mission simulator provides effective training for a large part of the
training elements constituting a continuation training programme.

A full mission simulator must include both a virtual simulator and representations of the fighter
aircraft environment. The virtual simulator constitutes the cockpit and the mission systems,
a high-fidelity flight dynamics model, an out-of-the-window visual system, sensors, weapons,
communication systems, and possibly a motion platform. Such a full mission simulator is shown in
figure 2.1. Additionally, the surrounding environment must be represented; the physical environment
(natural and man-made ground environment and the atmospheric environment) and the entities,
both friendly and threat entities (e.g. aircraft, ground-to-air missile systems, etc.). These entities are
normally created by constructive simulation, i.e. simulated humans operating simulated systems,
also called CGFs and synthetic agents.

A CGF is an autonomous or semi-autonomous actor in military simulation-based training and
decision support applications [3]. According to the NATO Long-Term Scientific Study LTSS/48,
CGF is defined as “A generic term used to refer to computer representations of entities in simulations
which attempts to model human behaviour sufficiently so that the forces will take some actions
automatically (without requiring man-in-the-loop interaction)“ [4]. Generally speaking, CGFs can
be considered intelligent simulated elements operating in a simulated environment, similar to how
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Figure 2.1 An example of a full mission simulator. Source: [5].

humans would do in the real world. Equipped with autonomy and intelligence, a CGF may perceive,
communicate and coordinate with other entities.

The main challenge of constructing a CGF is to design its behaviour, which should be accurate and
realistic to best cope with and reflect the nature and uncertainty of an authentic battle environment.
Representing human aspects in CGFs is especially challenging. For a fighter aircraft, these human
aspects include how the pilot behaves in order to obtain situation awareness, manoeuvre the aircraft,
use sensors and weapons, and communicate with other pilots and command and control elements.
The current constraints in the behaviour models force instructors and role players to micromanage
the constructive entities, restricting the complexity of scenarios that can be managed and trained
realistically.

Today, behaviour models are based on symbolic AI. These models are handcrafted and typically
rule-based [6] or scripted. The rules and scripts of these models lay the foundations of CGFs, and
are typically derived from standard doctrine and TTP publications, and through tedious interview
processes eliciting knowledge from experts on the behaviour of both own forces and adversaries.

2.1.1 Next Generation Threat System

NGTS is a synthetic environment generator owned by the Naval Air Warfare Center Aircraft
Division (NAWCAD) of the United States Armed Forces [7]. The software is used to support
military training, testing, analysis, research, and development and is targeted especially towards the
air combat domain. It can model both friendly and opposing units across most military domains
and aims to provide a realistic theatre environment.

NGTS consists of a set of program components that run separately from each other and perform
different roles. The NGTS Core Simulation Engine performs all simulation, but lacks an interface
for performing anything more than simple tasks, such as loading, starting and stopping a scenario.
The Battle Monitor provides more detailed control through a visual interface, and allows – among
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other things – giving orders to simulated units and adding and removing units from a scenario.
Other components include an after-action review tool and the Behavior Editor, in which behaviours
for computer-generated forces can be specified using the BTN modelling language.

NGTS can communicate with other simulation systems using several communication protocols, such
as the Distributed Interactive Simulation (DIS) [8] protocol. NGTS is also able to communicate
using tactical data links, such as Link 16 [9] over the Joint Range Extension Application Protocol
(JREAP) [10].

2.1.2 Behaviour transition networks

BTNs are similar to finite state machines (FSMs) but include several augmentations. They also
share some similarities with Petri Nets. Stottler Henke Associates developed the BTN in the early
2000s [11, 12, 13], but, to our knowledge, no formal definition of BTN has been provided.

Figure 2.2 This ex-
ample BTN shows how
actions connected to
more than one transition
have assigned priorities.

Syntactically, BTNs are bipartite-directed multigraphs. They are
bipartite since their vertices may be divided into two sets, action
and transition vertices, such that each edge is directed from an
element in one set to an element in the other set. A transition vertex
expresses a condition that, when fulfilled, transitions between action
vertices. Thus, edges connect action vertices to transition vertices
and transition vertices to action vertices. BTNs are multigraphs since
action vertices may connect to multiple transition vertices expressing
different conditions. In this event, the transition vertices are assigned
priorities defining the order to evaluate them in case more than one
condition is fulfilled. All BTN must have a start action vertex and
an end action vertex. An example of a BTN is shown in figure 2.2.

Definition A behaviour transition network 𝐺 = (𝑉, 𝐸) is a bipartite-
directed multigraph, where 𝑉 = {𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑, 𝑣1, 𝑣2, ..., 𝑣𝑠} is a set of
vertices and 𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑟 } is a set of directed edges 𝑒𝑖 = (𝑣 𝑗 , 𝑣𝑘)
with 𝑣 𝑗 , 𝑣𝑘 ∈ 𝑉 . The set 𝑉 can be partitioned into two disjoint sets
𝐵 and 𝑇 such that 𝑉 = 𝐵 ∪ 𝑇, 𝐵 ∩ 𝑇 = Ø, and for each directed edge,
𝑒𝑖 ∈ 𝐸 , if 𝑒𝑖 = (𝑣 𝑗 , 𝑣𝑘), then either 𝑣 𝑗 ∈ 𝐵 and 𝑣𝑘 ∈ 𝑇 or 𝑣 𝑗 ∈ 𝑇 and
𝑣𝑘 ∈ 𝐵.

Furthermore, BTNs may be hierarchical, wherein one or more action
vertices refer to other BTNs. This property of BTNs is essential to
model complex behaviour and avoid the state explosion of FSMs.
Graphically, actions are expressed as rectangles (often with rounded
corners), while transitions are expressed as ellipses, with the name
of the specific action or transition located inside these shapes. They
have input and output ports at the top and bottom for connecting to
other vertices using edges.

The execution of a BTN is relatively simple, beginning at the start vertex node and proceeding to
the following vertex. If the following vertex is an action, the action gets executed. If the following
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vertex is a transition, the transition occurs only when the condition is met. If the following vertex
branches to more than one transition, their conditions are evaluated in the order given by their
priority scheme as described above. Concurrency is not supported. Note that in hierarchical BTNs,
an action vertex may refer to another BTN, in which case any subsequent transition vertex still
gets evaluated and can interrupt this sub-BTN execution. This behaviour is an important aspect of
BTNs that helps reduce their complexity. Finally, the execution terminates in the end action vertex.
When controlling simulated entities, each entity will have its own BTN. The BTNs can read and
write messages to and from blackboards enabling information sharing and cooperation between the
entities.

As mentioned, modelling BTNs in NGTS is done using its Behaviour Editor. In NGTS, action
vertices are called commands, and transition vertices are called triggers. Note that NGTS follows a
slightly less strict definition of BTNs than the one outlined in this section: NGTS allows edges that
connect action nodes to action nodes and transition nodes to transition nodes, a property contrary to
the definition given above. All the other rules for BTNs still hold.

Another type of software for modelling BTNs is SimBionic [14]. SimBionic is an open-source
tool comprising a run-time system that reads and executes BTNs, and a debugger for testing and
debugging behaviour.

2.2 Machine learning

Machine learning is a branch of artificial intelligence which concerns the design and use of
algorithms that make computers able to learn from data and use this knowledge to make predictions
or decisions. Typical ML applications include data classification, clustering, dimensionality
reduction, agent control, and more.

Conceptually, most ML methods deal with creating some function that takes a certain input and
generates a usable output. For instance, an image classification function could take a vector
containing the greyscale values of each image pixel as input, and return a vector containing
probabilities that the image fits a given category from a set of possible categories. Machine learning
involves automatically refining the parameters of such functions to provide useful outputs. Different
ML methods use different types of functions and often different methods of refining the function
parameters.

Machine learning can be divided into three main categories: supervised, unsupervised, and
reinforcement learning [15]:

• Supervised learning consists of learning mappings from input to output, and the ML model
is trained using example data that shows the correct output for a given input. Supervised
learning is often used for data classification: a typical task is to classify the contents of an
image.

• Unsupervised learning aims to find structures in data, like clusters of data points in a data set.
Unsupervised learning algorithms are not trained using example data but instead tasked to
minimize some heuristics of the data. For instance, if the algorithm is tasked with finding a
certain number of clusters of data points, the algorithm would have to find the best location
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for each cluster centre and assign each point to a cluster. The heuristic could then be to find
these such that it minimizes the mean-squared distance from each data point to the centre of
its assigned cluster. Unsupervised learning is obviously used for data clustering but can also
be used for dimensionality reduction.

• Reinforcement learning (RL) deals with learning goal-directed behaviour for agents. Typically,
an RL algorithm will be given some state as input and then choose an action based on that
state. State-action pairs are given a reward value depending on whether taking that action
leads to a desirable outcome. The RL model is refined in order to pick the action giving the
highest reward for a given state. RL is often used in order to control agents in environments
where it is difficult to know whether the outcome of a particular action will be desirable
without attempting it first.

This report focuses on using a special kind of supervised learning, imitation learning (IL), to
generate behaviour models for CGFs in the air-combat domain.

2.2.1 Imitation learning

An intelligent agent is an autonomous entity that perceives its environment through sensors and
carries out actions that affect the environment and help the agent achieve its goals [16]. Such agents
may perform various tasks in different environments, e.g. in the field of robotics. However, as the
complexity of the environment increases, so does the challenge of manually modelling the agent’s
behaviour. Instead of defining increasingly complex behaviours that consider every eventuality, it
might be easier to just provide examples of how to solve a task and let the agent learn from these
examples. This is the goal of IL.

IL is the study and application of algorithms that use demonstrations to make agents learn certain
behaviours [17]. The behaviour of an agent is determined by a function that takes the agent’s state
as input and returns the preferred action for the agent to take. This function is normally referred to
as the agent’s policy. In addition to using demonstrations, policies can be learned using experiences.
These experiences can originate from the agent itself, as is the case when IL is combined with RL, or
they can be created by another agent or human. An experience consists of a previously encountered
state, the action that was taken in that state, and the reward that was gained from that action. While
the actions of a demonstration are assumed to be optimal, the actions from experiences are usually
not.

Russel and Norvig [16] define the terms demonstration and experience as follows.

• A demonstration is presented as a pair of input and output (𝑠, 𝑎) where 𝑠 is a vector of
features describing the state at that instant and 𝑎 is the action performed by the demonstrator.

• An experience is presented as a tuple (𝑠, 𝑎, 𝑟, 𝑠′) where 𝑠 is the state, 𝑎 is the action taken at
state 𝑠, 𝑟 is the reward received for performing action 𝑎, and 𝑠′ is the new state resulting from
that action.

There exist various approaches to IL, but the two major classes of methods are behavioural cloning
and inverse reinforcement learning. Behaviour cloning aims to learn a policy by directly mapping
states to actions or trajectories in a standard supervised learning fashion [18]. The demonstrations
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used in behaviour cloning are considered optimal; thus, the agent’s performance will not exceed
that of the demonstrator. Inverse reinforcement learning is closely related to RL in that it also uses
a reward function. However, in inverse reinforcement learning, the reward function is unknown, and
the learner attempts to recover it from a given policy or demonstrations of this policy [17]. When a
suitable reward function is found, the agent’s policy may be refined further using RL and the new
reward function, and the resulting policy may even be better than the demonstrator’s policy.

Although IL and supervised learning are similar in many circumstances, some properties distinguish
the two approaches. For example, when creating a demonstration for IL purposes, the demonstrator
may perform actions that are impossible for the learning agent to recreate. A robot may, for instance,
not be able to perform the same actions as a human due to the limitations of robot joints [17]. Such
properties are not typical in the standard supervised learning formulation.

2.2.2 Artificial neural networks

Most modern ML methods take inspiration from biological processes, such as biological neural
networks. An artificial neural network (ANN) is a composition of artificial neurons, or nodes, that
are connected to one another in layers. Each node takes input from the output values of nodes in the
previous layer, computes some weighted combination of the input values, and passes it on as output
to be used by the next layer. These weighted connections loosely resemble the behaviour of brain
synapses between biological neurons, and the output value of a given node is known as the node
activation, in an analogy to the electrical activation of biological neurons.

Input	layer Hidden	layers Output	layer

Figure 2.3 A simple artificial neural network illustrating neurons, layers and weighted
connections. Note that each layer, including the input and output layers, can have an arbitrary
number of nodes. Source: [19].

In essence, an ANN is used to approximate some function or system that gives the desired output
for a given input. This function does not need to be known. An example could be an image
classification function that takes a vector containing the colour values of each pixel in the image as
input, and gives a vector containing probabilities that the image belongs to a set of categories as
output, e.g. the category of images containing a cat, a dog, and so forth. Such a function would be
exceedingly difficult to find analytically. However, the neural network is able to approximate this
unknown function by refining its parameters until it gives desirable outputs.

The term network topology is used to describe how many layers a network has, how many nodes it
has, and how the nodes are connected [20]. Figure 2.3 shows a fully connected network, sometimes
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referred to as a dense neural network, in which every node is connected to all nodes in its preceding
and following layer. Other network structures exist, like recurrent networks, that are often used to
process time series data, or residual networks, which use shortcuts to skip certain layers. These
structures are not discussed here. Networks with more than one hidden layer (as shown in figure
2.3) are known as deep neural networks and can, under the right circumstances, approximate more
complex functions than shallower networks.

The activation of a given node 𝑘 is calculated using the following expression:

𝑎𝑘 = 𝑏𝑘 +
∑︁
𝑗

𝑤 𝑗𝑘𝑎 𝑗 (2.1)

Here, 𝑏𝑘 is the bias of node 𝑘 , which is a constant value that is specific to each node in the neural
network. 𝑗 represents the nodes that provide input to node 𝑘; in a fully connected network, this is
every node in the previous layer to 𝑘 . 𝑤 𝑗𝑘 is the weight given to the input from node 𝑗 by node 𝑘 .
Finally, 𝑎 𝑗 is node 𝑗’s output value.

It is also common to represent equation 2.1 without the bias term, 𝑏𝑘 . In this case, a bias node is
instead added to each layer of the neural network, with a constant output of 1. The bias term 𝑏𝑘
then instead becomes a part of the weights 𝑤 𝑗𝑘 ; since every node has a constant input of 1 from a
bias node, the weight a node gives to this constant input can replace the 𝑏𝑘 term.

In equation 2.1, the 𝑏𝑘 and 𝑤 𝑗𝑘 values of each node are trainable parameters; ANNs learn to
approximate a function by optimizing these parameters so that the network gives the desired output.
Normally, this optimization is performed by initializing the trainable parameters to some set of
values according to some initialization scheme. A set of inputs for which the desired output is
known is then passed through the network, and the outputs are compared with the desired outputs
using a loss function, which represents how different the actual output is from the desired output.
The training variables are then tuned in order to minimize the loss function. How this is done
depends on the optimization method chosen; often, the loss function is differentiated with respect to
the trainable parameters, and this differential is used to update the parameters. The procedure of
optimizing the trainable parameters is normally referred to as training the network.

The activation values given by equation 2.1 are strictly linear. However, it is not always the case
that the unknown function to be approximated will be linear. In order to make ANNs represent
nonlinear functions, some nonlinear transformation 𝜙(𝑎𝑘) is normally applied to the activation
values before they are passed to the next node [21, p. 165]. This type of transformation may be
referred to as a nonlinear activation function or simply a nonlinearity. Examples of commonly used
nonlinearities are the sigmoid function:

𝜙(𝑎𝑘) =
1

1 + 𝑒−𝑎𝑘
(2.2)

the hyperbolic tangent function:

𝜙(𝑎𝑘) =
𝑒𝑎𝑘 − 𝑒−𝑎𝑘

𝑒𝑎𝑘 + 𝑒−𝑎𝑘
(2.3)

and the rectified linear unit function:

𝜙(𝑎𝑘) =
{
𝑎𝑘 , 𝑎𝑘 > 0
0, 𝑎𝑘 ≤ 0

(2.4)

It is common to choose a function that is easily differentiable since most optimization methods
depend on differentiating the output of the neural network.
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2.2.3 Evolutionary algorithms

Figure 2.4 A flowchart de-
scribing the typical steps of an
evolutionary algorithm.

Evolutionary computing (EC) is a subfield of AI dealing with
a class of algorithms inspired by evolutionary processes. These
algorithms are called evolutionary algorithms (EA) and are ap-
plied to a wide range of computational problems. EAs do not
guarantee optimal solutions but are designed to deliver satisfact-
ory solutions within an acceptable time [22, p. 21]. Generally,
an EA creates a population of candidate solutions to the problem
that is to be solved. The solutions are then scored according to
some evaluation function, and the best solutions get a chance
to contribute to the creation of new solutions. One of the most
widely used EAs is the genetic algorithm (GA). Inspired by the
Darwinian principles of natural selection, GAs allow members
of a population to interact with each other and reproduce [23,
p. 301]. The reproduction generally involves combining aspects
of members from the current generation’s solutions. By intro-
ducing random alterations to their offspring, a large space of
possible solutions is explored. Usually, EAs continue creating
new generations until a termination condition is reached. This
could be that a satisfactory solution has been reached, that the
evolution has stagnated, or that too much time has elapsed. The
type of EA one is dealing with is characterised by whether and
how the following fundamental components and procedures are
defined:

• Representation. EAs are population-based search algorithms where individuals in a
population yield candidate solutions to a given problem. The initial step of designing an
EA is to define a way to meaningfully represent these individuals in a way that allows the
EA to mutate them or splice them with other individuals. This representation is known
as an individual’s genotype and could, for instance, be a list of integers or floating point
numbers. An individual’s genotype representation must be translatable into the kind of object
that could solve the problem. The type of object depends on the problem, but could for
example be executable computer programs, neural networks, or time schedules. The actual
solution object that an individual is translated into is referred to as that individual’s phenotype.
Finding a good representation means finding a suitable genotype for the problem, and finding
a translation that means that changes in the genotype leads to meaningful changes in the
phenotype.

• Evaluation function. The evaluation function, normally referred to as the fitness function,
is a function or procedure that assigns a quality measure to the genotypes. This quality
measure, or fitness, represents an individual’s ability to solve the problem at hand. Since
EAs are commonly used to solve optimization problems, they usually involve minimizing or
maximizing the fitness function.

• Population. The EA’s population is the full set of individuals, or candidate solutions that the
EA is currently working on. The population size is usually more or less constant throughout
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the evolutionary search, which means that only a subset of individuals in each generation will
be propagated to the next, which in turn leads to competition between the individuals [22,
p. 31]. In some applications, specific population measures may be used, such as diversity
measures that distinguish distinctive solutions. Before evolution may start, the initialization
of the first generation’s individuals must take place. The initialization is usually based on
creating randomly composed genotypes.

• Selection mechanisms. There exist two types of selection mechanisms for EAs; parent
selection and survivor selection. These are the processes responsible for improving the
population’s overall quality. The parent selection mechanism picks strong individuals from
the current generation to become parents that produce offspring for the next generation. The
selection procedure is usually probabilistic but based on fitness in some way. However, to
prevent the evolutionary search from becoming too greedy and stranding in local optima,
weak individuals are typically also given a chance to become parents. The survivor selection
mechanism brings a few individuals forward unchanged from one generation to the next. The
process takes place after new individuals have been created, and is usually performed in a
deterministic manner by selecting the top-ranking individuals from the previous generation
[22, p. 33].

• Variation operators. While the selection mechanisms effectively reduce the population’s
diversity, variation operators are responsible for creating diversity by generating new indi-
viduals [24]. There are two types of variation operators; recombination and mutation. Some
EAs apply both operators, while others use only one of them. Exactly how these operators
work will depend on the genotype representation. The recombination operation, also called
crossover, combines genetic aspects, usually from two or more parent individuals, into one or
more offspring. The operation is probabilistic, meaning that which parts of each parent get
selected and how they are used depend on random processes. The parents that get selected
for mating presumably possess some desirable traits reflected by the fitness values, and
their offspring will hopefully carry a combination of these traits, which results in further
improved behaviour. Of course, there is also a chance that the new genetic composition is
disadvantageous and decreases performance. The mutation operator is applied only to a single
individual at a time and alters that individual’s genotype. The choice of both individual and
type of alteration is usually random. Together with the selection mechanisms, the variation
operators exploit a population’s existing resources and explore the search space by creating
new solutions.

• Termination condition. Normally, the evolution process is set to terminate once some
condition is reached. If there is a known optimal fitness level for the given problem, the
condition would be that an individual reaches this value. However, since EAs are stochastic,
arriving at this optimum is unlikely. Therefore it is more common to define an acceptable
fitness threshold that, once is reached, will cause the evolution to terminate. Other common
termination conditions could be that the performance of the population stagnates (meaning
no improvement has occurred over some number of generations), that a maximum number of
generations are completed, or that the population diversity drops below a minimum.

While there exist many types of EAs, this report focuses on GAs. For further reading on EC and
EAs, we recommend looking into the introductory book by Eiben and Smith [22].
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2.3 Neuroevolution of augmenting topologies

Neuroevolution of augmenting topologies (NEAT) is a GA used to evolve artificial neural networks.
The method was developed by Kenneth O. Stanley in 2001 [25] and laid the groundwork for
many neuroevolution methods used today. While predecessing neuroevolution methods focus on
optimizing the parameters of fixed ANN structures, NEAT evolves both network topologies and
optimizes their parameters, hence the name. This section addresses the NEAT method as described
in the original paper, while subsequent work offers various extensions [26].

NEAT seeks to answer the following questions:

1. Is there a genetic representation that allows different neural network topologies to crossover
in a meaningful way?

2. How can one protect topological innovations that have yet to be optimized so that they do not
disappear from the population prematurely?

3. How can the size of topologies be minimized throughout evolution without the need for a
fitness function that measures structure complexity?

The key ideas behind NEAT are as follows:

• Genetic encoding with historical markings. In GAs, the individuals have a genotype,
which is the encoding that undergoes mutation and crossover, and a phenotype, which results
from transforming a genotype into some object that solves the problem at hand, like a
neural network. When genotypes become complex, recombining individuals in a meaningful
way may prove challenging. NEAT combats this by adopting historical markings to keep
track of the origin of all genes, allowing recombination without the need for expensive
topological analysis. Whenever a new gene appears as a result of structural mutation, a
unique id, or innovation number, is assigned to that gene. These innovation numbers are the
historical markings used to match the genetic material between any individuals in a possibly
topologically diverse population.

• Protect and promote structural innovation. NEAT aims to protect structural innovation by
dividing the population into species based on the genes’ historical markings. Only individuals
within the same species may compete and mate with each other. To preserve the diversity
of solutions, individuals get their fitness adjusted according to their species’ size, such
that sparsely populated species holding innovative solutions reproduce more than densely
populated species with well-established solutions.

• Genome initialization with minimal structure. Completely random initialization of
genomes is not uncommon among GAs. However, this could result in a base of solutions with
large amounts of complexity that might not directly improve with crossover and mutation.
The size of topologies may be controlled with a fitness component measuring their complexity
to prevent them from bloating. However, NEAT instead creates initial network structures that
are as simple as possible and incrementally expands the solutions through genetic operations.

2.3.1 The NEAT algorithm

Being a genetic algorithm, NEAT follows the standard process of initializing a population of
solutions that undergoes selection pressure, genetic crossover and mutation. In addition, NEAT
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incorporates the three key ideas presented above. An overview of the NEAT algorithm is presented
step by step in algorithm 1 below.

Algorithm 1: An overview of each step of the NEAT algorithm.
(1) initialize a population of 𝑁𝑝𝑜𝑝 random individuals with minimal structures;
(2) while the termination criterion is not satisfied do

(3) evaluate all genomes in the population;
(4) divide the population into species;
(5) reproduce genomes and replace the population with offspring;

Note the following remarks regarding the steps of algorithm 1:
1. The size of the minimal structure is predefined (i.e. the number of hidden layers and nodes).
2. The termination criterion could, for example, be 𝑁𝑔𝑒𝑛 generations or a fitness threshold.
3. Evaluating a genome means calculating its fitness. First, a genotype-to-phenotype conversion

is performed, meaning the genome is transformed into a neural network. A set of data is
propagated through the neural network, and the genome’s fitness value is the result of a cost
function applied to the set of output values (and possibly some target values)1.

4. At the first generation, only one species exists, containing all individuals in the population.
5. Reproduction involves several steps:

• Adjust the fitness of each genome in each species (explicit fitness sharing).
• Eliminate the lowest-performing members from the population (predefined threshold).
• Every species receives a number of offspring in proportion to its members’ sum of

adjusted fitnesses. For each species, repeat until this number is reached:
1. Select two parents for crossover2.
2. Produce a child that inherits genes from the parents.
3. With some probability, perform a structural mutation to the child.
4. With some probability, mutate one of the child’s connections.

2.3.2 Genetic encoding

NEAT encodes individuals such that the genes from two parents may be conveniently lined up when
producing new offspring. The encoding is a linear representation of a neural network’s connectivity,
consisting of a node gene set and a connection gene set. The node genes represent the set of inputs,
hidden nodes, bias nodes and outputs that may be connected. Each connection gene specifies which
two nodes are connected, the weight of this connection, whether the connection is enabled, and an
innovation number. This innovation number is the historical marking used to find corresponding
genes when performing a crossover between two individuals, described in more detail in section
2.3.4.
1The choice of cost function, or objective function, depends entirely on the problem at hand. For example, in the case of
classification, the cost function could be cross-entropy, or in the case of regression, it could be mean squared error.

2There exists various ways to select parents for reproduction: Examples are random selection, fitness proportionate
selection, rank selection, tournament selection, etc. There is no default parent selection method specified in the NEAT
paper.
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Figure 2.5 A genotype to phenotype mapping example. The genotype (top) produces the
depicted phenotype (bottom). Source: [25].

2.3.3 Mutation

There are two types of NEAT mutations; structural mutations, which change a neural network’s
topology, and connection weight mutations. Each structural mutation adds a gene to the genome,
making it expand, as shown in the figure above. Adding a connection by mutation adds a connection
with random weight connecting two previously unconnected nodes. Adding a node by mutation
disables an existing connection and places a new node with two new connections where it used
to be. The new connection going to the new node gets a weight of 1.0, while the new connection
going out gets the same weight as the old connection. This way of adding new nodes protects the
genome from decreasing its performance when mutating. New genes receive an innovation number.
The innovation number is global and gets incremented with each new gene, thus tracking gene
appearances’ chronology.

2.3.4 Crossover

The historical markings allow genomes of different structures and sizes to mate in a sensible way.
During crossover, the parents’ matching genes are lined up; that is, the genes that share innovation
numbers. The genes that do not match are categorised as either disjoint or excess genes, depending
on whether their innovation number is lower or higher than the highest common gene. When
producing new offspring, the matching genes are chosen randomly from the parents, while disjoint
and excess genes are selected from the fittest parent.

2.3.5 Maintaining diversity through speciation

NEAT protects topological innovation by dividing the population into species and letting individuals
compete within their species. The historical markings between a pair of genomes are used to
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Figure 2.6 The two types of structural mutation in NEAT. Both types, adding a connection
and adding a node, are illustrated with the connection genes of a network shown above their
phenotypes. The disable flag, denoted DIS, indicates that the connection is disabled. Source:
[25].

measure their compatibility, which determines whether they belong to the same species. Largely
disjoint genomes share little evolutionary history and are thus less compatible. The compatibility
measure, 𝛿, is a linear combination of the number of excess 𝐸 and disjoint 𝐷 genes and the average
weight differences of matching genes 𝑊 .

𝛿 =
𝑐1𝐸

𝑁
+ 𝑐2𝐷

𝑁
+ 𝑐3𝑊 (2.5)

𝑁 is the number of genes in the larger genome, and the coefficients 𝑐1, 𝑐2 and 𝑐3 control the
importance of the three factors. In each generation, genomes are placed into species using a
compatibility threshold. Each species is represented by a random genome from the species of the
previous generation. A given genome in the current generation is placed in the first species with
which it is compatible. Further, NEAT uses explicit fitness sharing to preserve diversity by placing
less emphasis on solutions in dense species. Genomes in the same species share the fitness of their
niche, a function that is necessary for speciated evolution to work [25]. Every individual gets their
fitness 𝑓 ′

𝑖
adjusted according to its distance 𝛿 from every other individual 𝑗 in the population.

𝑓 ′𝑖 =
𝑓𝑖∑𝑛

𝑗=1 𝑠ℎ(𝛿(𝑖, 𝑗))
(2.6)

The sharing function 𝑠ℎ yields 0 when the distance 𝛿(𝑖, 𝑗) is above a threshold 𝛿𝑡 , and 1 otherwise.
Thus, 𝑓 ′

𝑖
is equivalent to dividing the fitness of genome i by the number of individuals in its species,

which results in good solutions in densely populated regions having lower fitness values than
comparably good solutions in less populated regions.
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Figure 2.7 Using innovation numbers to line up the genes of genomes yielding different
network topologies. During crossover, matching genes are inherited randomly, whereas disjoint
genes and excess genes are inherited from the more fit parent. In this example, equal fitnesses
are assumed, so the disjoint and excess genes are also inherited randomly. Source: [25].

2.4 Software virtualization and containerization

Computer programs are traditionally run inside a host operating system on a physical machine.
However, there are drawbacks to this: if a program is dependent on a particular library, then this
library must be installed and shared with every other program running on the operating system.
If another program is dependent on a conflicting version of that library, then it might become
impossible to run. If a program crashes, errors might propagate through the host system, in the
worst case causing it to crash entirely.

Virtual machines are a method used to handle these problems, and the concepts underpinning their
operation can trace their origins back to the late 1950s. However, virtual machines in the modern
sense only became popular in the late 1990s and early 2000s, at the time of the Disco research
project at Stanford University, and its commercial spin-off VMWare [27].

A virtual machine does not access the hardware of the physical machine it is running on directly.
Instead, it has access to emulated hardware. Software running inside a virtual machine should
ideally not be able to tell that it’s not running on an actual physical machine. The virtualization
software in which the virtual machine runs provides the abstraction layer between the virtual
machine and the physical hardware, making sure the virtual machine can not access memory or
hard drive space outside of what has been allocated to the virtual machine. This virtualization
software could either run as software in an operating system or be an operating system on its own.
It is not uncommon to run several virtual machines at the same time on the same physical machine.
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Since the virtualization software works to ensure that processes inside a virtual machine can’t affect
anything outside it, a program that crashes inside a virtual machine will usually only crash the
virtual machine at worst, while the host machine and any other virtual machine that runs on it
should remain unaffected. Each virtual machine is also given its own virtual hard drive, on which it
must install its own operating system and software. This means that two virtual machines can run
different library versions and even entirely different operating systems, all while running on the
same physical machine.

However, virtual machines come with drawbacks: since each virtual machine needs to provide its
own entire operating system, they take up a lot of disk space and are computationally expensive.
Initializing a virtual machine can also take a long time, as it needs to go through almost all the same
boot procedures as a physical machine.

Instead of abstracting away the hardware of a physical machine, it is also possible to provide
an abstraction layer that uses the computer’s existing operating system. Programs are still given
restricted access to the host computer’s hardware, such as memory and hard drives, but they are able
to use the operating system kernel of the host machine. This paradigm is known as containerization
[28].

Ever since Docker was released by Docker, Inc. in 2013, software containerization has been a
rising trend. Docker is the most common containerization framework and provides a standardized
environment in which to run software across a range of different platforms. Docker containers are
also easily distributed, making it simple to run a program quickly across a range of different host
machines.

Docker containers are "lightweight, standalone, executable packages"3. They contain every library
and file a program needs to run, depending only on the host operating system’s kernel. They are
portable, and there is no need to install any software or libraries on the host machines they run on
apart from the Docker engine itself. This makes it very easy to deploy Docker containers to virtually
any machine, makes it easier to upgrade applications by replacing them with newer containers, and
makes it possible for developers to run their programs in environments that are almost exactly like a
live server [29].

However, although running software in containers removes the need to install software and
dependencies on a host machine, starting a large set of containers on a set of different hosts, making
sure they can communicate with each other, and restarting them if they fail is still a complex task.
In order to handle this task automatically, container orchestration tools are used.

Container orchestration tools are tools that manage containers running in a cluster automatically.
This involves starting and stopping containers across several computers, but also monitoring their
health, and restarting them if they crash. Orchestration tools also need to manage the network
connections between containers and allow outside access to containers when required [30].

Kubernetes is the most popular container orchestration tool and is more or less a de facto standard
[31]. It was originally released by Google but is now maintained by the Cloud Native Computing
Foundation. Several cloud computing providers offer services based on Kubernetes, such as Azure

3https://www.docker.com/resources/what-container, accessed 2021-04-20.
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Kubernetes Service4, Google Kubernetes Engine5, and Amazon Elastic Kubernetes Service6.

A containerized application running in Kubernetes consists of several parts, the most important of
which are pods and services. Pods are conceptually the smallest units in a Kubernetes service and
consist of a set of containers that are always run together. Services define the interfaces that other
programs can use to connect to Kubernetes pods by specifying which ports the Kubernetes host
should forward to a Kubernetes pod. A service can provide an interface to other pods, but also
provide an interface for external programs or end users to connect to.

Pods, services, and the other Kubernetes building blocks are expressed through the use of YAML7

files [32]. These are configuration files that specify options for the different building blocks, for
instance, which containers should be part of a pod or which ports should be forwarded in a service.
Each YAML file normally describes only a single building block, and they all need to be submitted
individually to build a complete Kubernetes application.

In order to simplify this process, it is common to specify Kubernetes applications using Helm
charts8. Helm charts consist of a set of YAML files that together describe a full Kubernetes
application. These can then all be installed and uninstalled from a Kubernetes cluster in a single
operation.

2.5 Related work

Early attempts at constructing intelligent agents for the air combat domain not based on simple
rule-based systems date back to the nineties, if not earlier. Some of this research includes supervised
manoeuvre classifier models based on neural networks [33, 34], and agents implemented using the
Soar cognitive architecture [35, 36]. The Soar agents incorporate knowledge based on interviews
with experts in flight tactics and analysis of the tactical domain. Artificial intelligence research has
come a long way during the last thirty years, and improved methods and techniques have emerged.
With these improvements, the use of AI for training purposes has increased, and several research
contributions can be found in military, industry and medical domains.

This related work section briefly summarizes some recent research contributions and other work on
using ML methods to construct behaviour models for use in the air combat domain. The research
methods will not be described in detail; thus, we encourage readers interested in learning more to
take a closer look at the provided sources. To our knowledge, there is little or no research focusing
specifically on the application of IL techniques in this field, which this report focuses on. However,
a great deal of the reviewed work applies RL, some of which use reward shaping, which shares
similarities with IL if used extensively. We categorize the reviewed work based on their choice of
ML methods or applications.

4https://azure.microsoft.com/en-us/services/kubernetes-service/, accessed 2021-04-20.
5https://cloud.google.com/kubernetes-engine/, accessed 2021-04-20.
6https://aws.amazon.com/eks/, accessd 2021-04-20.
7YAML was originally short for Yet Another Markup Language, but has since been changed to the recursive acronym
YAML Ain’t Markup Language.

8https://helm.sh/docs/topics/charts/, accessed 2021-05-12
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Evolutionary algorithms and fuzzy systems

Grammatical evolution [37], which is an evolutionary algorithm designed to evolve computer
programs, has been used to generate behaviour trees for CGFs in the air combat domain [38].
A behaviour tree is a common way to represent AI behaviours, using control flow nodes and
execution nodes [39]. In this study, subject matter experts provided domain knowledge encoded
into behaviour trees in a knowledge base. The behaviour trees were converted to bit-strings using
a pre-defined grammar and got improved through variation operators in an evolutionary process
guided by reward-based feedback from the simulation environment. This framework was proven to
work quite well using simple one vs one beyond visual range scenarios.

Another line of research applied a combination of genetic algorithms and fuzzy logic to air combat
control problems involving autonomous unmanned combat aerial vehicles (UCAVs) [40, 41, 42].
Fuzzy logic is a form of many-valued logic that handles degrees of truth, as opposed to Boolean
logic, in which truth values are either zero or one [16]. In their work, the researchers introduced
the method of genetic fuzzy trees, which uses a genetic algorithm to train multiple small fuzzy
inference systems that combine to solve complex tasks at lower computational costs than a single
genetic fuzzy system would [43]. The genetic fuzzy trees learned to successfully control UCAVs in
scenarios involving enemy threats, such as air interceptors, surface-to-air systems and electronic
warfare systems.

Evolutionary algorithms have also been applied to problems within other simulated military domains,
such as for learning cooperative movement tactics of ground troops [44, 45]. Although not focusing
on the air combat domain, this work is closely related to ours since they aim to learn agent behaviour
by providing demonstrations in an IL configuration.

Dynamic scripting

Dynamic scripting is an RL method that has been studied extensively in this field. The method uses
an adaptive rulebase for the generation of behaviours in the form of scripts [46]. Each rule in the
rulebase has a probability of being included in the behaviour scripts, and a weight-update function
changes these probabilities using feedback from the environment.

Dynamic scripting has proven to be an efficient method for learning behaviours targeted towards air
combat training simulations. It has been used to study reward functions that consider the expected
outcome of agents’ actions [47], the transfer of learned behaviours between distinct scenarios [48],
and creating behaviour models in the form of finite-state machines for increased adaptivity [49].
Dynamic scripting has even been used for the generation of BTNs with NGTS as the simulation
environment [50].

Deep reinforcement learning

Due to its recent success, deep reinforcement learning (DRL), which is a combination between RL
and deep learning [51], has become one of the most popular classes of algorithms used for learning
agent behaviour today. Researchers have successfully used DRL algorithms to learn complex agent
behaviour for various tasks and games such as Go [1] and StarCraft II [2]. These achievements have
likely contributed to an increasing interest in applying DRL to the air combat domain.
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Among recent activities, [52] has reviewed open-source DRL frameworks that may be applicable in
learning CGF behaviours intended to support the training of fighter pilots. RAND Corporation
explored different DRL methods for learning to plan simple operations involving suppression of
enemy air defences, and one of these methods proved successful [53].

Others have focused on learning to manoeuvre unmanned aerial vehicles (UAVs) [54, 55]. Fur-
thermore, [56] demonstrated the effectiveness of applying reward shaping, a technique where
supplemental rewards are provided to make a problem easier to learn [57], to DRL for air combat
using a simple within visual range one vs one scenario. Pope et al. applied a hierarchical DRL
method to train an agent to control a fighter jet engaging in dogfight scenarios within visual range
[58]. This agent came second in a tournament held by the Defense Advanced Research Projects
Agency (DARPA), further described below.

Benchmarking intelligent air combat behaviour

As can be seen above, there are many approaches to learning behaviour models for the air combat
domain. However, as of writing this report, there are no standardized procedures for training and
testing the performance of CGF behaviour models that researchers can easily employ. A couple
of projects have identified the need for such procedures and have contributed to their emergence.
One of these is a testbed developed by Air Force Research Laboratory called the Agent Generation
& Evaluation Network Testbed (AGENT) [59]. The AGENT testbed aims to provide developers
of fighter pilot agents with the ability to generate large amounts of tactical data for ML of such
agents’ capabilities. The testbed employs enemy CGF simulated by NGTS, whose behaviours are
implemented as BTNs. The developers may exercise their agents against these GCFs in scenarios
defined in a shared scenario library.

Another line of work is the Air Combat Evolution (ACE) programme of DARPA. The ACE
programme seeks to gain fighter pilots’ trust in combat autonomy by exploring human-machine
collaborative dogfighting [60]. As part of this programme, DARPA carried out a benchmark of
AI-controlled fighters in a simulated environment called the AlphaDog trials. Eight companies
participated in the AlphaDog Trials, in which agents faced one another in one vs one dogfight.
Although dogfighting might not be the most relevant scenario used when training pilots today, the
tournament created an arena where current approaches to AI could take on a complex problem
relevant to military applications. The winner of the trials was an agent developed by Heron
Systems, which employed a neural network-based behaviour trained using DRL. This winning agent
outperformed the other agents in addition to a human fighter pilot [61].
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3 Methods

The following chapter argues for the choice of simulation application and machine learning methods
used to approach the imitation learning problem.

3.1 Simulation environment and behaviour representation

We use NGTS because it is designed especially for the air combat domain, for its DIS support and
its built-in implementation of BTNs.

We would have preferred to represent behaviour using neural networks. However, this was not
possible when using NGTS because we lacked the API access necessary to control entities within
NGTS from an external program. Instead, we chose to use BTNs for representing behaviours, which
allowed us to use NGTS’ built-in BTN support. BTNs offer, among other things, the following
assets:

1. Explainability: BTNs are made of by human-readable components, which result in highly
explainable behaviour models.

2. Complexity: Although BTNs are simple, human-readable structures, the number of possible
node combinations is vast, making it possible to express very complex behaviours using
BTNs.

3.2 Evolving BTNs with NEAT

NEAT was the algorithm of choice for learning behaviour models for the air combat domain. While
NEAT was originally intended to create ANNs, the algorithm can also apply to other tasks. ANNs
and BTNs are quite different because one represents some mathematical function, while the other
defines a behaviour model composed of action nodes and condition nodes. However, in essence,
both ANNs and BTNs are networks of nodes (vertices) and connections (edges). Therefore, NEAT’s
ability to evolve network topology and parameters might generate BTNs. We used the NEAT-Python
implementation [62] as a basis and added some extensions to make it able to evolve BTNs in place
of ANNs. These extensions are described in section 3.2.1. For clarity throughout the rest of this
report, we name the modified NEAT algorithm BTN-NEAT. Further, for simplicity, the terms nodes
and connections are used from here on when referring to BTNs rather than vertices and edges.

Although BTNs may be hierarchical, in that a node can be used to call a different BTN, evolving
hierarchical BTNs is dramatically more complex than evolving simpler, self-contained BTNs.
Therefore, for simplicity, BTN-NEAT evolves self-contained BTNs and not hierarchical BTNs. In
NGTS, BTNs consist of two types of nodes: commands (action nodes) and triggers (conditional
nodes). Recall from section 2.1.2 that BTNs employed by NGTS do not strictly follow the BTN
definition and allow connecting commands to other commands and triggers to other triggers. When
traversing a BTN, if it is possible to continue into more than one node at any point, the possible

28 FFI-RAPPORT 22/02423



Figure 3.1 A valid behaviour transition network with adjacent trigger nodes. In this BTN
example, two adjacent pairs are formed, one by the pink and blue trigger nodes and the other
by the grey and blue trigger nodes. The priorities of the connections determine which trigger
is evaluated first. Trigger nodes are depicted as ellipses, and command nodes as rectangles.

nodes are called adjacent to each other. Adjacency is not necessarily associative: in figure 3.1, the
blue trigger node is adjacent to both the pink trigger node and the lower grey trigger node, but the
pink and grey trigger nodes are not adjacent to each other.

Three rules define the validity of BTNs:

Rule 1. Command and triggers may not be adjacent.
Rule 2. Commands may not be adjacent.
Rule 3. If two or more triggers are adjacent, they must have different priorities.

These three rules ensure that no ambiguity occurs within a BTN. In other words, a node’s output
can only connect to more than one node if these are all triggers. Yet, if two or more triggers are
adjacent, the priorities of the connections leading to them determine the order of their evaluation.
Figure 3.1 shows how connections leading to adjacent trigger nodes have different priorities. Since
it is only possible to execute valid BTNs, the above rules must be satisfied during the crossover and
mutation of genomes. While mutation of network parameters remains as described in section 2.3.3,
structural mutation and the crossover operation require some modification.

3.2.1 Adapting NEAT to evolve BTNs

In order to make NEAT evolve BTNs in place of the ANNs for which it was originally intended,
we slightly modified two of the algorithm’s procedures: the structural mutation procedure and the

FFI-RAPPORT 22/02423 29



crossover procedure. These modified procedures are described below. The genes that code for
connections between nodes are kept as when evolving neural networks, and the weights of the
connections are used to determine the priority when two trigger nodes are adjacent.

3.2.1.1 Modified structural mutation

For the most part, structural mutations of BTN genomes remain as described in section 2.3.3, except
for the following consideration. If a structural mutation is performed on a genome, for example,
adding a node, the operation must be carried out such that the genome remains valid. A structural
mutation that violates any of the three rules may not be performed. This is solved by creating a copy
of the genome, structurally mutating it and then checking its validity. If valid, the original genome
is replaced by the mutated copy. If the resulting genome is not valid, another structural mutation
is attempted. This process is only repeated for a predefined number of attempts to avoid infinite
loops. The new structural mutation operation is shown in figure 3.2. Note that structural mutations
may also involve deleting nodes or connections, although these operations are not described in the
original NEAT paper.

Add connection
between two random

nodes

Genome
Scheduled for

structural  mutation

Select and split
random connection

Create and
use a copy 

of the genome

Will the
new node have

adjacent
node(s)?

Yes
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adjacent node a
command

node?

No

Insert trigger node and
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Replace genome with the
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Replace genome with the

copy

Does
the connection
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Yes

Yes

Replace genome
with the copy

No

Delete random
node

Delete random
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add node?

Mutate
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Mutate
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Figure 3.2 A flowchart depicting the modified structural mutation procedure, which complies
with the defined rules and allows BTN-NEAT to evolve BTNs in place of ANNs. The procedure
affects a genome that has already been scheduled for a structural mutation. The mutation
operator (add node, add connection, delete node or delete connection) gets selected based on
the mutation probabilities set by the user.
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3.2.1.2 Modified crossover

Like the modified structural mutation, the crossover procedure between BTN genomes remains
mostly as described in section 2.3.4, except for the following consideration. ANN genomes have
only one type of node, which means that inheriting any gene from any parent genome during
crossover is unproblematic, even though the new configuration may reduce its fitness. On the other
hand, BTNs consist of two types of nodes; commands and triggers. Thus, a child BTN genome may
not inherit genes that break any of the adjacency rules. When a child BTN genome is produced,
only the parents’ genetic combinations that yield a valid BTN can be inherited. The new crossover
operation is shown in figure 3.3.

Parent
genome 2

Parent
genome 1 Line up genes
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Initialise empty
child genome

For each gene in the most fit parent

Is gene
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disjoint?
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Revert gene
inheritance

Does 
the child yield

valid BTN?
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Revert and inherit
gene from other
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the child yield

valid BTN?

Start:
First gene

No

Yes

Yes

No

Yes

No

No

Yes

Next gene

Figure 3.3 A flowchart depicting the modified crossover procedure, which complies with the
defined rules and allows BTN-NEAT to evolve BTNs in place of ANNs.

Note that the order of the historical markings will also affect which parent genes are added to the
child genome.

3.2.2 Fitness functions

Like in other genetic algorithms, BTN-NEAT individuals compete against each other, and the
strongest individuals of the population are most likely to pass on their genetic composition. The
strength of an individual is measured using a fitness value, which indicates how well the individual
can solve the problem at hand. The fitness value of each individual is calculated using a fitness
function.

We developed primarily one fitness function for the imitation learning task, termed the trajectory
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fitness function. In addition, we experimented with an alternative fitness function, a semantic fitness
function, which aims to offer increased robustness and generalization to the learned BTN solutions.

3.2.2.1 Trajectory fitness function

The trajectory fitness function is used to calculate the difference between a provided trajectory
generated by some behaviour and the demonstration trajectory we wish to imitate. It involves adding
up the Euclidean distances between these two trajectories at every logged data point, in addition to
two terms that punish the behaviour for using the radar and missiles in a different way compared to
the provided demonstration. The optimization consists of minimizing the following fitness function:

𝑓 = 𝑑trajectory + 𝑝radar + 𝑝missile (3.1)

The trajectory component is defined as the sum of distances at 𝑡0, ..., 𝑡𝑘 :

𝑑trajectory =
∑︁
𝑘

𝑑𝑘𝑒
−𝑐𝑒𝑡𝑘 (3.2)

where
𝑑𝑘 =

√︃
(𝑥𝑡𝑘 − 𝑥𝑡𝑘 )2 + (𝑦𝑡𝑘 − �̂�𝑡𝑘 )2 + (𝑧𝑡𝑘 − 𝑧𝑡𝑘 )2 (3.3)

and

𝑐𝑒 =
𝑟 ln 2
𝜆

where

𝑥𝑡𝑘 , 𝑦𝑡𝑘 , 𝑧𝑡𝑘 = the position of the trajectory being evaluated at time 𝑡𝑘
𝑥𝑡𝑘 , �̂�𝑡𝑘 , 𝑧𝑡𝑘 = the position of the demonstration trajectory at time 𝑡𝑘

𝑟 = simulation time scale factor
𝜆 = exponential decay factor

The 𝑒−𝑐𝑒𝑡𝑘 term in equation 3.2 leads to a data point at time 𝑡 + 𝜆 being given half the weight of
a data point at time 𝑡, and emphasises the importance of correctly imitating the first parts of the
demonstrated trajectory, before focusing on subsequent parts. The simulation time scale factor 𝑟
determines the relationship between the rate of advance in simulation time and wallclock time [63,
p. 29]. For example, simulations with a simulation time scale factor of 𝑟 = 2 execute twice as fast
as real-time, while simulations with 𝑟 = 1 execute in real-time.

The first parts of a demonstrated trajectory are emphasised because behaviours tend to evolve
towards more complexity: in early generations of evolution, behaviours only have a few conditions
and commands and are fairly simple, while later generations can become increasingly complex.
The early parts of a demonstration will also usually be characterised by simple behaviours, such as
flying towards or away from an enemy, while later parts of the demonstration behaviour typically

32 FFI-RAPPORT 22/02423



become more complex, such as turning away from the enemy at a given distance. The early parts
of the trajectory are therefore emphasised in order to make the BTN-NEAT algorithm learn the
overarching, simple parts of some behaviour before adding on complexity later.

The radar punishment component punishes the agent for using its radar in a way that is dissimilar to
the demonstrated behaviour and is defined as

𝑝𝑟𝑎𝑑𝑎𝑟 =
∑︁
𝑘

𝑠𝑡𝑘 𝑠𝑡𝑘𝑐𝑝 (3.4)

Here, 𝑠𝑡𝑘 is the state of the controlled aircraft’s radar at time 𝑡𝑘 , 𝑠𝑡𝑘 is the radar state of the
demonstration at time 𝑡𝑘 , and 𝑐𝑝 is a coefficient weighting the impact of the radar punishment. The
radar state is 1 when the radar is on and 0 otherwise.

We also considered implementing a punishment term for firing weapons in an incorrect manner but
did not have time to explore this further.

3.2.2.2 Semantic fitness function

Figure 3.4 Finding the relative dis-
tance and heading between the entities
for use with the semantic fitness func-
tion.

While the trajectory fitness function described above
may be appropriate for the given learning problem,
it requires the initial conditions of the scenario to
be identical to those of the demonstration. Running
even the demonstration behaviour itself using different
starting positions for the aircraft would lead to a very
low fitness score. As an attempt to overcome this
limitation, we did some experimental development
of a fitness function that would compare two sets of
events instead of comparing the trajectories directly.
These events do not describe exactly what each entity
is doing, as in the case of comparing trajectories, but
rather what each action means. For this reason, we call it a semantic fitness function.

These events describe changes in relative heading and distance between the red and blue entities, in
addition to changes to their radar and missile states. The possible events are listed in table 3.1.

Event Description
𝑒1 Facing towards target
𝑒2 Turning away from target
𝑒3 Facing away from target
𝑒4 Turning towards target
𝑒5 Tracking target with sensor
𝑒6 Launching missile

Table 3.1 An overview of the different semantic events that may be registered.

A semantic sequence takes the following form
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[(𝑒1, 𝑑1), (𝑒2, 𝑑2), (𝑒3, 𝑑3), · · · , (𝑒𝑛, 𝑑𝑛)]

where 𝑒1, . . . , 𝑒𝑛 are the events in the semantic sequence, and 𝑑1, . . . , 𝑑𝑛 are the distances between
the aircraft when the events occurred. The different semantic events are derived using a set of rules
that examines the rate of change of the relative distance and heading between the red and blue
aircraft.

To derive the similarity between two event sequences, the event sequences are turned into strings of
letters, where each letter represents a type of event, and the Levenshtein string matching distance
[64] is used to measure how similar the event strings are. The Levenshtein distance computes the
minimum number of edits (insertions, deletions or substitutions) required to change one word into
another. The complete semantic fitness function is defined as follows.

𝑓semantic = 𝑐𝐿𝑑Levenshtein + 𝑐𝑑𝑑aircraft (3.5)

where 𝑑Levenshtein is the normalised Levenshtein distance yielding a value in the range [0, 1], 𝑑aircraft
is the sum of distances between the aircraft at all the events, and 𝑐𝐿 and 𝑐𝑑 are coefficients weighting
the contribution of the two fitness terms.
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4 The machine learning system

Machine learning requires large amounts of data to train models effectively. It would therefore be
unfeasible to evaluate generated BTNs by manually running NGTS and extracting data logs to be
used for fitness evaluation. Instead, the machine learning system developed in this work consists of
a set of tools that automate these processes, presented in this chapter.

4.1 System overview

The overarching system consists of four parts: the BTN evolution, simulation control, the simulation,
and the data logger. When evolving behaviours, these four parts are used in a loop, illustrated in
figure 4.1. First, BTN Evolution evolves a set of new behaviours for the CGF to employ. Then, the
simulation control, which is configured to use a specific scenario, configures the simulated entities
to use these behaviours and starts the simulation. The data logger logs the events of the simulation,
which the BTN evolution system then uses to calculate the fitness of each generated behaviour. This
information is then used to evolve behaviours further.

Figure 4.1 The loop that is used to evolve BTNs.

Figure 4.2 shows how these parts were implemented, as well as the data formats used to exchange
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information between them. Each of the components are described in more detail in the following
sections.

Figure 4.2 The BTN evolution loop from figure 4.1, with implementation details and data
formats shown.

4.1.1 BTN evolution and simulation control

The BTN evolution and simulation control parts were both implemented as a single Python
application. This combined BTN evolution and simulation control program is the driving force
behind the machine learning loop. This application is hereafter referred to as the evolution controller
for simplicity.

BTN evolution is achieved using BTN-NEAT, which is a modified version of the NEAT algorithm,
described in more detail in chapter 3. Once a BTN is created, it is saved to disk in an XML format
in order for NGTS to be able to read it.

In order to get NGTS to use the new behaviours, the simulation control needs to assign the behaviour
to a simulated entity. This is done by automatically generating new scenario files, in which simulated
entities and their behaviours are specified. The scenario files are generated based on a scenario
template; the initial positions and types of the simulated entities are defined, and only the names
and behaviours are modified.

Both scenarios files and behaviours need to be stored in specific folders where NGTS can find them.
However, NGTS only discovers new files when restarted. For this reason, the NGTS process itself
is controlled using the Python Subprocess library9. For each generation, NGTS is restarted once a
batch of behaviours and scenarios is generated and placed into the correct directories. Simulation
control calls are then sent over DIS in order to load new scenarios into NGTS and start simulations,

9https://docs.python.org/3/library/subprocess.html
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and stop the simulations after having run for a given amount of time. At the end of each generation,
the NGTS process is killed before a new generation is started.

Once the simulation is finished, the BTN evolution reads that generation’s data logs from a set of
files that the data logger has stored to the hard drive. A fitness function compares the content of the
new data logs to the provided demonstration to derive a fitness score for each behaviour of that
generation. The fitness functions used are described in section 3.2.2.

NGTS is remote-controlled using protocol data units (PDUs) that are transmitted over the DIS
protocol. Standard PDUs are used for starting and stopping the simulation. Saving and loading
scenarios, on the other hand, are performed using a custom PDU proprietary to NGTS, based on the
SetData PDU.

In order to simplify the control of NGTS, we have written a remote control application that can be
called by the evolution controller. This program can create and send the DIS PDUs that are needed
to remote control NGTS, as well as listen to DIS traffic to determine when NGTS has finished its
startup procedures. The program is written in Java and can be used in two ways: either by providing
command-line arguments or by sending commands across a TCP connection.

4.1.2 Data logger

The data logger is a Java program that uses either HLA or DIS to collect data about simulated
entities and stores this data in an internal database. When the logger is done recording, this data is
written to log files. The log files for a given behaviour are used when calculating a fitness score for
that behaviour.

Currently, the logger is capable of logging an entity’s usage of sensors, the firing of weapons, and its
trajectory. This can be done for either a single entity, a set of entities or all entities in the simulation.
Each entity’s logs are written to a separate folder, and the sensor usage, weapon fire, and trajectory
logs are stored in separate files.

The sensor usage log contains data about which other entities were being tracked by a specific
entity’s sensors. Whenever an entity’s sensor gains or loses a track, a new line is written to the log
file. Each line contains two columns: the (simulated) time the track was acquired or lost, and a list
of the entities that are currently being tracked. A line is also written when the entity loses all tracks;
in this case, the list of entities that are being tracked is empty. An example of what a log file might
look like is shown in table 4.1.

The weapon fire log describes when a specific entity fired its weapons. Whenever a weapon is fired,
a new line is added to the log. These lines consist of four columns: the (simulated) time at which
the weapon was fired, the name of the weapon being fired, the type of weapon being fired, and the
name of the target that is being fired upon. An example weapons log is shown in table 4.2.

The trajectory log consists of a set of observations of the entity’s physical state. Each observation
corresponds to a single row in the log file, and each row is split into six columns. The first column
contains the (simulated) time of the observation. The next three columns contain the X-, Y-, and
Z-coordinate of the entity’s position at that time. The final two columns contain the entity’s speed
(in m/s) and it’s heading (in degrees) at that time. An example trajectory log can be seen in table 4.3.
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Time [s] Targets
7.30 Red_1
10.48 Red_1, Red_2
13.50 Red_2
14.78

Done

Table 4.1 An example sensor usage log. In an actual log file, columns are separated by tab
characters. The log shows the aircraft starting to track entity Red_1 at 7.30 s, and starting to
track Red_2 at 10.48 s. The track of Red_1 is lost at 13.50 s, and the track of Red_2 is lost at
14.78 s.

Time [s] Weapon name Weapon Type Target
7.55 AIM-120D_1 2 1 225 1 2 4 0 Red_1

Done

Table 4.2 An example weapon usage log. In an actual log file, columns are separated by tab
characters. The log shows a weapon with the name AIM-120D_1 being fired at target Red_1 at
7.55 s. The weapon type is expressed as a DIS enumeration [65].

Time [s] X-coordinate [m] Y-coordinate [m] Z-coordinate [m] Speed [m/s] Course [deg]
0.00 373647.31 440144.02 18483.60 278.7 6.7
0.10 373306.53 440104.02 18460.84 278.7 7.2
0.20 372956.55 440062.95 18437.46 278.2 8.4

Done

Table 4.3 An example trajectory log. In an actual log file, columns are separated by tab
characters.

The coordinates of the entity are given in local tangent plane coordinates with respect to a
configurable point on the Earth’s surface. This point is also used as the origin of the coordinate
system. The axes of this coordinate system are chosen such that the X axis points due north, the
Y axis points due east, and the Z axis points downwards. This coordinate system is illustrated in
figure 4.3. The course of an entity is also calculated with respect to this coordinate system.

The logger can be run using either a graphical user interface or from the command line. The main
window of the graphical user interface can be seen in figure 4.4. This graphical user interface
allows the user to connect to DIS or HLA federations, start and stop recording, set the origin of
the coordinate system used in trajectory logs, and write log files concerning specific entities from
previous recordings. It is also possible to set the logger to automatically start and stop recording
upon receiving start and stop interactions, and to automatically write log files when the recording is
stopped. The logger can be configured to automatically write logs for a single entity or all entities
with names matching a specified prefix.

The logger’s command line mode also allows the user to set most of these options when starting the
program. However, it is not possible to manually start and stop recordings and write logs using the
command line mode, so the automatic mode is always used. This means that the user is required to
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Figure 4.3 A 2D example demonstrating local tangent plane coordinates. The figure shows
a cross-section of Earth (with exaggerated eccentricity). The origin of the local tangent plane
coordinate system at point 𝑂 has latitude 𝜃. The X axis is tangent to the surface of the Earth at
point 𝑂, and points towards the North Pole. The Z-axis is normal to the surface tangent and
points towards the centre of the Earth. (Note that a normal line drawn through 𝑂 does not
generally pass exactly through the centre of the Earth. This is due to the Earth’s eccentricity.)
The Y-axis is not shown in this 2D example, but on a 3D globe, it is perpendicular to both the
Z-axis and X-axis, pointing towards the East.

provide a name or prefix to determine which entities’ logs should be written to file.

The DIS[8] standard specifies that entity updates should only be sent if the entity’s state has changed
significantly since the previous update. This is also specified in the Guidance, Rationale, and
Interoperability Modalities (GRIM) [66] document that accompanies the very commonly used
Real-time Platform Reference Federation Object Model (RPR-FOM) [67]. This means that the
logger may receive updates at uneven intervals and that these intervals may also vary between
entities.

Since updates for an entity’s state are received infrequently, and at uneven intervals, a receiving
system needs to extrapolate the previous state of the entity until the next update is received. This
process is known as dead reckoning. New updates should only be sent when the difference between
the entity’s actual state and its dead reckoned state from the previous update exceeds a certain
threshold. This threshold is most commonly set to an orientation difference of 3° or a position
difference of 1 metre [8][66]. This means that if an entity’s trajectory is determined by extrapolating
updates, it will have discontinuities each time a new update is received, since this very discontinuity
is the reason a new update was sent.

In sum, this means that if the data logger only saves the entity states that are received in updates,
the trajectory log will have infrequent data points with uneven intervals. In order to achieve a
constant interval between the data points, it is possible to create a trajectory by extrapolating each
received update and then sampling this trajectory at even intervals to create the trajectory log. This
extrapolated trajectory will, however, contain discontinuities at each received update.

During simulation, a simulation system has no choice but to extrapolate an entity’s state based on
the last received update. However, since an entity’s trajectory log is written only after the logger has
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Figure 4.4 The main window of the graphical user interface of the logger program.

already finished recording and all updates have been received, it is possible for the logger to also
use the next update when determining an entity’s trajectory. A smooth trajectory may be achieved
by interpolating between consecutive updates rather than extrapolating from single updates. This
interpolated trajectory may then be sampled at regular intervals, giving a trajectory log that contains
both a constant interval between data points and no discontinuities.

The following calculations interpolate between updates along a single spatial dimension. Multidi-
mensional trajectories can be interpolated by interpolating for each dimension independently.

Since each update contains values for an entity’s position, velocity and acceleration, in order to
interpolate between two updates, a trajectory needs to be found that matches the received position,
velocity and acceleration at the time of both updates. This can be done by assuming the acceleration
between the two updates follows a curve given by

𝑎(𝑡) = 𝑐0(𝑡 − 𝑡0)3 + 𝑐1(𝑡 − 𝑡0)2 + 𝑐2(𝑡 − 𝑡0) + 𝑎0 (4.1)

where 𝑡0 is the time of the first update, 𝑎0 is the acceleration value received for the first update, and
𝑐0, 𝑐1, and 𝑐2 are unknown variables that need to be determined. Integrating this equation gives the
following functions for velocity and position

𝑣(𝑡) = 𝑐0
4
(𝑡 − 𝑡0)4 + 𝑐1

3
(𝑡 − 𝑡0)3 + 𝑐2

2
(𝑡 − 𝑡0)2 + 𝑎0(𝑡 − 𝑡0) + 𝑣0 (4.2)

𝑥(𝑡) = 𝑐0
20

(𝑡 − 𝑡0)5 + 𝑐1
12

(𝑡 − 𝑡0)4 + 𝑐2
6
(𝑡 − 𝑡0)3 + 𝑎0

2
(𝑡 − 𝑡0)2 + 𝑣0(𝑡 − 𝑡0) + 𝑥0 (4.3)

where 𝑣0 and 𝑥0 are the velocity and position values received in the first update, respectively. If the
second update was received at time 𝑡1, and the values for acceleration, velocity, and position at this
update are denoted as 𝑎1, 𝑣1 and 𝑥1 respectively, then this gives the following system of equations:

𝑎1 = 𝑐0(𝑡1 − 𝑡0)3 + 𝑐1(𝑡1 − 𝑡0)2 + 𝑐2(𝑡1 − 𝑡0) + 𝑎0 (4.4)

𝑣1 =
𝑐0
4
(𝑡1 − 𝑡0)4 + 𝑐1

3
(𝑡1 − 𝑡0)3 + 𝑐2

2
(𝑡1 − 𝑡0)2 + 𝑎0(𝑡1 − 𝑡0) + 𝑣0 (4.5)

𝑥1 =
𝑐0
20

(𝑡1 − 𝑡0)5 + 𝑐1
12

(𝑡1 − 𝑡0)4 + 𝑐2
6
(𝑡1 − 𝑡0)3 + 𝑎0

2
(𝑡1 − 𝑡0)2 + 𝑣0(𝑡1 − 𝑡0) + 𝑥0 (4.6)
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This system of equations may be solved for 𝑐0, 𝑐1 and 𝑐2, giving the following values:

𝑐0 =
10(𝑎1 − 𝑎0) (𝑡1 − 𝑡0)2 − 60(𝑣1 + 𝑣0) (𝑡1 − 𝑡0) + 120(𝑥1 − 𝑥0)

(𝑡1 − 𝑡0)5 (4.7)

𝑐1 =
(18𝑎0 − 12𝑎1) (𝑡1 − 𝑡0)2 + (96𝑣0 + 84𝑣1) (𝑡1 − 𝑡0) + 180(𝑥0 − 𝑥1)

(𝑡1 − 𝑡0)4 (4.8)

𝑐2 =
(3𝑎1 − 9𝑎0) (𝑡1 − 𝑡0)2 − (36𝑣0 + 24𝑣1) (𝑡1 − 𝑡0) + 60(𝑥1 − 𝑥0)

(𝑡1 − 𝑡0)3 (4.9)

This solution was found using the software library SymPy10. These values may then be plugged
into equations 4.1, 4.2, and 4.3 in order to interpolate between two updates. In order to calculate the
full trajectory of an entity, these values need to be calculated for each pair of consecutive updates.

(a) Each update is extrapolated using the received
position, velocity and acceleration values until the next
update is received. This leads to discontinuities in the
trajectory.

(b) The trajectory is interpolated between adjacent
updates. The trajectory is continous. The interpolated
velocity and acceleration values are also continuous,
but this is not shown here.

Figure 4.5 A comparison of extrapolated and interpolated trajectories for a set of random
data points. Each red dot represents a received update. The set of updates is the same in both
examples, and each update contains a random position, velocity and acceleration value. The
actual units are unimportant since this figure is only meant for illustration, and so the axes are
not labelled.

Figure 4.5 shows a comparison between extrapolated and interpolated trajectories. Since the position,
velocity, and acceleration values are random for each update, the extrapolation discontinuities in
this figure are likely exaggerated when compared to a more realistic example.

10https://www.sympy.org/en/index.html
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4.2 Speeding up simulations through parallelization

In order for BTN-NEAT to generate suitable behaviours, it is necessary to evaluate a large number
of individual behaviours. Since it is possible to evaluate individuals in a generation in any order,
and their fitness values are not used until the creation of the next generation, the evaluation can be
performed in parallel.

Kubernetes is a good candidate for doing this due to its orchestration capabilities. However,
Kubernetes requires containerized applications, and a Docker image was therefore created for each
of the applications shown in figure 4.2.

Although there exists a Windows version of Docker, it is more common to run Docker on the Linux
kernel, which is what we did in this work. The data logger and evolution controller described in
section 4.1 could easily be run on Linux since both Python and Java are platform-independent. On
the other hand, NGTS is a Windows program and could not easily be run on Linux. To solve this,
we ran NGTS using Wine, which is "a compatibility layer capable of running Windows applications
on [...] Linux".11 The downside to this was that NGTS ran a lot slower under Wine than it would
have on Windows.

In order to run the ML system in Kubernetes, the simulation control component of the evolution
controller needed to be expanded. When run on a single computer, the simulation control directly
starts and stops NGTS processes running on the same computer. However, inside a Kubernetes
cluster, the simulation control has to directly control Kubernetes instead, in order to create and
destroy Kubernetes pods containing NGTS. This was done by using the Python Kubernetes Client
library.12

The Kubernetes-based system was defined using a Helm chart13, consisting of two pods: one
containing the evolution controller and one containing NGTS, the remote control program, and
the data logger. When the evolution controller system generated new behaviours and scenarios for
NGTS to use, these files were stored to a shared drive. The evolution controller system then used
the Kubernetes client library to start several instances of the NGTS pod. These pods could then read
behaviours and scenarios from the shared drive, and store log files to the drive when the simulation
was complete. Finally, the evolution controller could read the logs, evaluate the behaviours, and
create a new generation of behaviours and scenarios.

11https://www.winehq.org/, accessed 2021-08-23
12https://github.com/kubernetes-client/python, accessed 2021-08-24
13https://helm.sh/, accessed 2022-08-02
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5 Experiment setup

This chapter outlines the setup and delimitations for our imitation learning experiments. This
includes defining the learning objective, describing the air combat scenarios used in our experiments,
the BTNs that the demonstration behaviours were based on, the set of BTN nodes available to
BTN-NEAT, and the configuration of the learning algorithm.

5.1 Learning objective

In this work, the goal was to use imitation learning to produce agents operating in one vs one
scenarios that behave in line with a set of provided demonstrations. These scenarios, described in
section 5.3, involve a friendly (blue) aircraft whose behaviour was static and a hostile (red) aircraft
whose behaviour was learnt by imitation. This necessitates a set of demonstrations for the algorithm
to learn from. Our algorithm, BTN-NEAT, was used to create BTNs that imitate two aspects of
the demonstration behaviour: its dynamic state, specifically its position, speed, and course, and its
usage of sensors. These aspects of the demonstration behaviour were captured and stored by the
data logger, which is described in section 4.1.2. This data logger was also used to capture the same
aspects of the evolved behaviours, allowing comparisons between the evolved behaviours and the
demonstration.

Although behaviour cloning is a type of imitation learning, it was unsuitable for use with NGTS and
BTNs. This is because BTNs do not directly map states to action, and behaviour cloning involves
approximating a state-to-action function. Instead, we attempted to learn behaviours by maximizing
the similarity between the evolved behaviours and the demonstrated behaviour by applying the
fitness functions defined in section 3.2.2.

There was also no fitness threshold used to determine whether the learning algorithm had evolved
a good enough behaviour. Instead, we manually inspected the trajectories of the BTNs with the
best fitness values during the experiment, and stopped the learning process when these trajectories
were judged to be sufficiently similar to the demonstration. Additionally, we manually inspected the
best BTNs. If an evolved BTN was found to encode the same behaviour as the demonstration BTN,
regardless of any vestigial nodes left over by the evolution process, it was found to be satisfactory.

5.2 BTN configuration and search space

In all the following experiments, the first three BTN nodes were kept static for all evolved genomes.
These static nodes are illustrated in figure 5.1. The BTN-NEAT algorithm would then add subsequent
nodes through its genetic operations. Furthermore, all node parameters were pre-defined, meaning
the learning algorithm was not able to change the parameter values of the nodes it introduced, such
as the amount of time to wait when using a Delay node or the angle to turn when using a Steer
Course node.

NGTS contains more than 400 unique types of BTN nodes, some of which are designed for platforms
other than aircraft, such as ground or naval platforms. Allowing BTN-NEAT to select among all
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Figure 5.1 An illustration of the three hard-coded BTN nodes present in all genomes; Start,
Fly and Put Sensor in Search. The shaded nodes represent an arbitrary composition of
subsequent nodes.

nodes would result in an unreasonably large search space for the evolutionary algorithm, meaning
a satisfactory behaviour would almost certainly not evolve for a very long time. Additionally,
some nodes represent very similar actions. In order to keep the problem simple, BTN-NEAT was
restricted to selecting from only eight different nodes. These eight nodes are summarised in table
5.1. As can be seen from the table, the parameter of the Steer Course node is set to 179° rather than
180°. The reason is that an angle of 180° results in the aircraft turning in arbitrary directions (left
or right) each time the node is called, resulting in an unstable trajectory outcome, while an angle of
179° will make the aircraft always turn right.

Even with the number of available nodes reduced to eight, there is still a large space of possible
behaviours for the evolutionary algorithm to search through. Approximating the size of this search
space can give an indication of whether the algorithm is actually learning anything useful; if it were
possible to find a satisfactory behaviour in a reasonable time by generating random behaviours,
there would be no need for the evolutionary algorithm.

Although a BTN can, in theory, become infinitely large and complex, most BTNs consist of
somewhere between 10 and 100 nodes in practice. One of our demonstration BTNs (shown in
figure 5.5) consisted of seven command nodes and eight trigger nodes. If both the type and number
of nodes and the connections between them are taken as fixed, this still gives a search space of
(number of possible command nodes)7×(number of possible trigger nodes)8 = 37×58 ≈ 8.5×108.
Given an evaluation time of 1 s per behaviour, a random search would take over 13 years on average
to find the original behaviour in a search space of this size. In reality, the number of nodes and
connections is not fixed, making the actual search space much larger, while the evaluation of
behaviours takes on the order of minutes per behaviour. If BTN-NEAT is able to find satisfactory
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Node Type Parameter Description

1 trigger N/A A primary target exists

2 command N/A Command sensors to track target

3 trigger N/A See if any AR weapon is in range

4 command 179° Command a heading goal in degrees true

5 command N/A Fly towards the specified target

6 trigger 180 s Delay for specified number of seconds

7 trigger max = 3 Triggers for specified number of counts

8 trigger N/A Route maneuver is complete

Table 5.1 An overview of the BTN nodes used in the experiments. The descriptions are taken
directly from the NGTS Behavior Editor. These nodes make up BTN-NEAT’s search space.
The Steer Course node’s parameter is set to 179° to make the aircraft always turn right, as
opposed to 180°, which results in arbitrary turning directions. Note that the Start, Put Sensor
in Search, and LOOP START nodes were hard-coded into each BTN but were not a part of
BTN-NEAT’s search space.

solutions within a reasonable time, the algorithm is much more efficient than a random search.

5.3 Scenarios

Three separate one vs one air combat scenarios involving one friendly aircraft (blue) and one hostile
aircraft (red) were used in the imitation learning experiments, as well as a demonstration of how
the red aircraft should behave for each scenario. The scenarios range from simple to slightly more
complex. The recurring idea is for the red aircraft to safely intercept its enemy by getting close
enough to use short-range weapons without receiving any damage. The initial conditions, which
are summarised in table 5.2, are equal for all three scenarios.
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Blue aircraft Red aircraft
Speed 0.5 Mach 1.2 Mach
Lat 63°30′46.04′′N 63°58′04.10′′N
Long 17°09′52.91′′E 19°13′47.47′′E
Distance 113.5 km
Altitude 25128 ft MSL 25296 ft MSL
Course 59° 244°

Table 5.2 The initial conditions of the red and blue CGFs for the three scenarios. The
altitude is given in feet above mean sea level (MSL). The course is given in degrees relative to
the north direction.

5.3.1 Scenario 1: Flee

The first scenario is the simplest of the three, and only the BTN nodes numbered 1–5 in table 5.1 are
required to compose the desired behaviour. In the demonstration for this scenario, both aircraft fly
straight towards each other, but once the red aircraft has its enemy within missile fire range, it turns
and flees in the opposite direction. The red aircraft has a considerably higher velocity compared to
the blue aircraft, so the distance between the two increases after the red aircraft has turned away.
No missiles are fired in this scenario.

Fly straight

Figure 5.2 A summary of the first scenario: Flee. The CGFs fly towards each other from
their initial positions. Once the blue aircraft comes within the red aircraft’s missile fire range,
the red aircraft turns and flees in the opposite direction.

The BTN used to produce the demonstration behaviour for this scenario is shown in figure 5.3, and
the duration of the scenario is 10 minutes.

5.3.2 Scenario 2: Feint

The second scenario extends scenario 1: Flee in the following way. When the red aircraft turns away
from the blue aircraft, it does so only for a little while before turning back to face the blue aircraft
again. This is repeated three times, resulting in a trajectory of a series of rounded rectangles. This
behaviour is meant to feint an attack on the blue aircraft, causing it to expend a missile. By turning
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Figure 5.3 The handmade BTN used to produce the demonstration for scenario 1: Flee.

away early, the red aircraft should be able to fly out of range, thus depleting the blue aircraft’s missile
stores. Finally, after the third feint, the red aircraft intercepts the blue aircraft. This behaviour
requires the full range of BTN nodes from table 5.1.

Fly straight

3x

Figure 5.4 A figure depicting scenario 2: Feint. The blue aircraft flies straight at a
considerably lower speed than the red aircraft. The aircraft initially fly towards each other.
Once the red aircraft has the blue aircraft within its missile fire range, the red aircraft evades
by turning in the opposite direction. After a while, the red aircraft turns back towards the blue
aircraft. This is repeated three times.

The BTN used to produce the demonstration for this scenario is shown in figure 5.5, and the
scenario’s duration is 20 minutes.

5.3.3 Scenario 3: CAP

The third and final scenario is similar to scenario 2: Feint, except that instead of flying straight
ahead, the blue aircraft performs a combat air patrol (CAP) with a leg length of approximately 18
km, initially flying north. The BTN used to produce the demonstration behaviour for the red aircraft
is identical to the one used in scenario 2: Feint, shown in figure 5.5. The example scenario lasts for
about 27 minutes.
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Figure 5.5 The handmade BTN used to produce the demonstrations for both scenario 2:
Feint and scenario 3: CAP.

Fly straight

CAP

3x

Figure 5.6 A figure depicting scenario 3: CAP. The blue CGF performs a combat air patrol
(CAP). The red aircraft initally flies towards the blue aircraft. Once the blue aircraft comes
within the red aircraft’s missile range, the red aircraft evades in the same way as in scenario 2.
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5.4 BTN-NEAT hyperparameters

Hyperparameters are the parameters of the machine learning algorithm itself and are normally
not adapted by the learning algorithm [21, p. 117]. NEAT has a considerable number of
hyperparameters whose values influence the performance and learning outcome, and a few BTN-
specific hyperparameters were also introduced to the BTN-NEAT algorithm. The values used for
the hyperparameters throughout the imitation learning experiments are summarised in table 5.3.

NEAT hyperparameter Value
Population size 128
Number of elites 10
Default node type random ∈ {trg, cmd}
Number of initial BTN nodes 2
Add connection probability 0.4
Delete connection probability 0.2
Add node probability 0.4
Delete node probability 0.4
Enable/disable connection probability 0.0
Disjoint coefficient 1.0
Compatibility threshold, 𝛿 4.2

Table 5.3 An overview of the hyperparameters used with NEAT in the imitation learning
experiments.

• Population size decides how many individuals there should be in each generation.
• Number of elites determines how many of the top-ranking individuals from the current

generation are transferred to the next generation.
• Default node type determines the node type when a new node gene is inserted into a genome,

which in this case is either a trigger or command chosen at random.
• Number of initial BTN nodes controls the maximum number of nodes a BTN consists of upon

initialization.
• Add connection probability sets the probability of adding a connection to a genome through

mutation.
• Delete connection probability sets the probability of deleting one of a genome’s connections

through mutation.
• Add node probability sets the probability of adding a node to a genome through mutation.
• Delete node probability sets the probability of deleting one of a genome’s nodes through

mutation.
• Enable/disable connection probability sets the probability of toggling the disabled flag of a

genome’s connection through mutation, either disabling or re-enabling the connection.
• Disjoint/excess coefficient weights the contribution of both disjoint and excess genes when

calculating the compatibility between individuals according to equation 2.5.
• Compatibility threshold, 𝛿 determines which individuals that belong to the same species.
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6 Experiment results

This section presents the results of the experiments and how different computational resources
and fitness functions affected the results. The scenarios used in the experiments apply the initial
conditions summarized in table 5.2. The section concludes by discussing some simulation issues
that arose while the experiments were conducted, mainly related to time management.

6.1 Computational resources

Different computational resources were employed when using the machine learning system (section
4) throughout the following three experiments. These computational resources ranged from running
the system sequentially on a single desktop computer to run it in parallel on computer clusters. As
will become apparent in later sections, these computational resources posed their various pros and
cons.

Desktop computer
This setup consisted of a single desktop computer running Windows 10. Since NGTS is a Windows
native program, this allowed us to run NGTS much faster than in any other setup, and experiments
could be conducted with simulation time scales up to 𝑟 = 50. However, it was only possible to run a
single instance of NGTS at a time using this setup. The desktop computer contained 12GB of RAM
and an Intel Xeon CPU with six cores running at 2.8GHz.

Small-scale computer cluster
In order to run several simulations in parallel, a small-scale computer cluster consisting of 32 CPU
cores was used with Docker containers. Because the cluster was distributed across two machines,
Kubernetes was used to orchestrate the Docker containers. Kubernetes was set up using Rancher, an
open-source system that is able to set up Kubernetes clusters almost automatically [68]. With this
setup, it was possible to run up to 32 NGTS instances in parallel. However, each NGTS instance had
to be run using Wine, causing slower simulations compared to running them natively in Windows.

High-performance computer cluster
The final and theoretically most powerful setup was a high-performance computing (HPC) cluster
consisting of tens of computers, each with tens of CPU cores. The total amount of CPU cores would
have allowed us to evaluate an entire generation of BTNs in parallel. These machines were running
SUSE Linux Enterprise Server 1214, and utilised PanFS15, which is a special file system allowing
all computers in the cluster to access a shared network drive. Unfortunately, running Kubernetes on
this cluster proved problematic, and in the end, this large-scale computer cluster could not be used
14https://www.suse.com/products/server/, accessed 2022-08-02
15https://www.panasas.com/products/panfs/, accessed 2022-08-02
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in any of the experiments. Nevertheless, the setup is presented here to share the experiences made
when attempting to make it work.

PanFS was not compatible with the Docker containers: these rely on a larger amount of symbolic
links than the shared file system would allow. This meant we had to install both Kubernetes and
each container image locally on the machines we would use; however, since these were intended to
use the large shared network drive, each machine only had a small amount of local disk space.

Once we managed to install and run Kubernetes, we ran into more problems: Machines in the
cluster would suddenly reboot themselves. This seemed to happen at random, and it often happened
to a different computer than the one we were using. We could not find the source of these problems,
and since these reboots risked adversely affecting the other users of the cluster, we decided to stop
working with the HPC.

6.2 Experiment 1

The first experiment was conducted to verify that the components of the learning system were
interacting as expected. The learning system was prepared with scenario 1: Flee (section 5.3.1),
running on a single desktop computer as described in section 6.1. Initially, neither the radar
component of equation 3.1 nor the decay term of equation 3.2 was used when calculating fitness
scores. This meant that the weights were effectively 𝑐𝑒 = 𝑐𝑝 = 0, reducing the fitness function to
simply adding up the distances between the two trajectories at every time step.

However, it quickly became apparent that all evolved BTN solutions would fly straight past the blue
aircraft rather than turning away when reaching the missile fire range. This undesired behaviour
occurred because the learning algorithm had no incentive to add the Put Sensor in Track node to the
genomes early on. The lack of this node meant that other nodes that depended on the aircraft’s
sensors being in tracking mode, such as the In AR Weapon Range node, would not be able to work.
We realised that a very careful composition of nodes is required for a BTN to yield the desired
behaviour, but without explicitly motivating BTN-NEAT, this composition was unlikely to occur
within a reasonable amount of time.

For this reason, we introduced the radar punishment aspect of 3.1 and set its coefficient to 𝑐𝑝 = 10000.
This added a penalty of 10000 fitness points to a genome’s total fitness for every time step its radar
status failed to match the radar status of the demonstration. The reason for selecting such a large
value was to force the learning algorithm to quickly evolve genetic compositions that included the
Put Sensor in Track node, before focusing on the manoeuvring aspects. With the updated fitness
function in place, the learning algorithm found BTNs producing the correct pattern, and the initial
experiment was considered a success. Details about the experiment are summarised in table 6.1.
The BTN-NEAT algorithm needed approximately 600 hours, or 25 days, of simulated flying in
order to learn the demonstrated behaviour.

6.3 Experiment 2

The second experiment was performed to test the learning system against a problem of increased
complexity. This experiment used scenario 2: Feint (section 5.3.2). First, the experiment was
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Value
𝑐𝑒 0
𝑐𝑝 10000
𝑟 , simulation time scale factor 50
time elapsed per simulation run 12 s
time to learn demonstrated behaviour ∼12 h

Table 6.1 Important aspects of experiment 1.

conducted using the single desktop computer, similar to the previous experiment, and the learning
algorithm did indeed find solutions that gave the desired behaviour. However, as can be seen in
table 6.2, the learning algorithm spent much more time learning the demonstrated behaviour than
for the first scenario. The BTN-NEAT algorithm needed approximately 2200 hours, or nearly 92
days, of simulated flying in order to learn this behaviour. This increase was partly because the Feint
scenario lasted twice as long as the Flee scenario, and partly because the demonstrated behaviour in
the Feint scenario was more complex than the behaviour demonstrated in the Flee scenario. Thus,
BTN-NEAT required an increased number of evolutionary steps to find a satisfactory BTN solution.

Value
𝑐𝑒 0
𝑐𝑝 10000
𝑟 , simulation time scale factor 50
time elapsed per simulation run 24 s
time to learn demonstrated behaviour ∼44 h

Table 6.2 Important aspects of experiment 2.

We discovered that the choice of hyperparameters might dramatically influence the number of
evolutionary generations required for BTN-NEAT to find adequate solutions. Therefore, we
sought to explore combinations of hyperparameters that would produce better BTNs in fewer steps.
However, as discussed in section 7, it proved challenging to perform simulations fast enough for a
search of hyperparameters to become feasible.

Running NGTS sequentially on a single computer proved to be a bottleneck. This restriction
motivated us to transition to running simulations in parallel using containers, which could, in
theory, greatly reduce the time needed to find good behaviour. This new architecture used Docker,
Kubernetes, and Rancher, running on the small-scale computer cluster, to speed up the optimization
process. As described in section 6.1, NGTS was not able to run at as high time scale factors inside
a container as when running directly on a Windows computer. Thus, we reduced the simulation
time scale factor from 50 to 816. With 32 CPU cores available and each NGTS instance requiring 2
CPU cores to run at a time scale factor of 𝑟 = 8, it should, in theory, be possible to simulate 128
seconds for each wall-clock second.

The experiment was conducted again, using Kubernetes to distribute and parallelize the simulations.
We obtained similar results to the previous run but in much less time, as can be seen in table 6.3.
16Later, further analyses would reveal that NGTS simulations might not be run reliably in Docker containers at simulation

time scale factors 𝑟 > 4 (see section 6.5). This matter was discovered when conducting experiment 3.
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The 2200 hours of simulated flying could now be performed in about 17 hours. The process was
run three times to verify the learning system’s reliability, all of which yielded satisfactory BTN
solutions after stagnating at 47, 43 and 44 generations, respectively. Figure 6.1 on page 57 shows
the resulting BTN and trajectory from one of these runs.

The evolved trajectory differed from the demonstration trajectory because the evolved behaviour
caused the aircraft to turn back towards the enemy sooner than the demonstration aircraft. In
order to match the demonstration trajectory more closely, the BTN-NEAT algorithm would have
needed to evolve a Maneuver Complete node between the Steer Course node and the Delay nodes.
Nevertheless, experiment 2 was considered a success.

We also attempted to run scenario 2: Feint using the semantic fitness function described in section
3.2.2.2. This fitness function compares two sequences of semantic events rather than two trajectories.
This was done in order to be able to vary the initial conditions like position, speed and course during
the optimization of BTNs, thus making them more robust to different environmental circumstances.
These initial conditions could not be varied while using the trajectory fitness function, as this
would have large, negative impacts on the fitness values, even for BTNs that exactly matched the
demonstrated behaviour. Unfortunately, we did not achieve good results using the semantic fitness
function. It requires further development and testing before it can be used for our purpose.

Value
𝑐𝑒 0
𝑐𝑝 10000
𝑟, simulation time scale factor 8
time elapsed per simulation run 150 s
NGTS instances (parallel) 16
number of generations ∼45
time to learn demonstrated behaviour ∼17 h

Table 6.3 Important aspects of experiment 2, using Docker containers and the small-scale
computer cluster to distribute simulations.

6.4 Experiment 3

For the third experiment, we used the same containerised setup that was used by the end of
experiment 2 (see section 6.1 for more details about the computational resources used). The
learning system was prepared with scenario 3: CAP, the trajectory fitness function with coefficients
𝑐𝑒 = 0, 𝑐𝑝 = 10000, and BTN-NEAT was run using the hyperparameters shown in table 5.3. We
found that behaviours evolved to exploit a local optimum of the fitness function, causing the aircraft
to fly in circles, as can be seen from figure 6.2 on page 58.

Flying in circles gives a reasonably high fitness score because by flying in circles, the aircraft always
stays near the demonstration trajectory, which consists of a set of rounded rectangles all centred
near the aircraft’s starting point (see figure 6.2). In contrast, flying directly towards the opposing
aircraft will initially match the demonstration trajectory exactly, but soon deviate much more from
the rounded rectangles than just flying in circles will.
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However, in order to learn to turn away from the opposing aircraft, the agent would first need to
learn to fly towards it. Since flying towards the opponent gave lower fitness scores than flying in
circles, this meant the evolutionary algorithm would have to go through a step that initially seemed
sub-optimal in order to evolve better behaviours later. This did not seem to happen, and even after
running for a very long time, the evolutionary algorithm never evolved past the local optimum of
flying in circles.

This problem did not arise during the Feint scenario because here, the opposing aircraft was flying in
a straight line. Since the demonstration aircraft always turned at a given distance from the opposing
aircraft, the turning point of each rounded rectangle in the demonstration trajectory moved with the
opposing aircraft. In this scenario, flying in circles would lead to progressively worse punishments
as the expected position of the aircraft, as given by the demonstration trajectory, got farther and
farther away. On the other hand, flying towards the enemy at all times (which eventually leads to
circling it) keeps the aircraft closer to the demonstration trajectory than flying in circles, and thus
leads to a lower punishment. In this case, flying towards the enemy was a better behaviour than
circling, and this behaviour would therefore be chosen as one the evolutionary algorithm could
propagate and mutate, eventually leading to the evolution of turning away from the opposing aircraft.

To make flying towards the enemy seem less sub-optimal in this scenario, we introduced an
exponential term to the distance punishment term of equation 3.3 that made the punishment
decay over time. Thus, the Euclidean distance component was weighted depending on how much
simulation time had elapsed, as described in section 3.2.2. This exponential term should lead the
evolutionary algorithm to try to learn behaviours in a sequential fashion: matching for instance the
first minute of a demonstration behaviour is given more weight than matching the second minute, but
once that first minute is learned, the only way to increase the fitness is to match the second minute,
which is given more weight than the third minute. Using this method, flying towards the enemy
results in a higher fitness score than flying in circles. This is because the fitness function gives a
higher score to a trajectory that initially matches the demonstration exactly, and later diverges, than
it gives to a trajectory that stays in the general vicinity of the demonstration track for the entire
duration of the scenario.

The time constant 𝑐𝑒 was calculated according to equation 3.3 using a simulation time scale factor
of 𝑟 = 8, setting the half-life (i.e. the time it takes for the punishment to decay by half) to the value
of 𝜆 = 60. This value was arbitrarily chosen but yielded good results. The value of 𝑐𝑒 was then
found as:

𝑐𝑒 =
𝑟 ln 2
𝜆

=
8 ln 2
60

= 0.0924

This value was then used when calculating the Euclidean distance punishment.

Scenario 3: CAP was rerun using the updated fitness function, and the optimization stagnated after
51 generations, yielding a much-improved result. The trajectory of the evolved behaviour now
resembled the demonstration reasonably well, indicating that the exponential decay of punishment
is indeed impactful. However, the behaviour would not send the red aircraft to intercept its opponent
after the third turnaround like in the demonstration, but rather keep flying in ellipses due to the lack
of a Counter node and a Fly to Target node. Figure 6.3 shows the BTN and trajectory produced
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Value
𝑐𝑒 0.0924
𝑐𝑝 10000
𝑟 , simulation time scale factor 8
time elapsed per simulation run 200 s
NGTS instances (parallel) 16
number of generations 51
time to learn demonstrated behaviour ∼23 h

Table 6.4 Important aspects of experiment 3 using containers to distribute simulations.

by the best genome from this run, and figure 6.4 shows the fitness value of each generation’s best
genome until the evolutionary process stagnates. An overview of the experiment can be seen in
table 6.4. As can be seen, the BTN-NEAT algorithm needed approximately 3000 hours, or 125
days, of simulated flying in order to learn the demonstrated behaviour.

6.5 Time management issues

Analyses revealed that when running under Wine, NGTS simulations will occasionally lag, either due
to a lack of CPU resources or network issues. However, the DIS standard provides no mechanism to
synchronize the simulation time of different simulation systems. It is possible to mark DIS messages
with a simulation timestamp, but most simulation systems, NGTS included, use the wallclock time
at which the data was valid as the simulation timestamp. This means that the timestamp does not
necessarily coincide with the simulation time, and timestamp errors can become significant when
the system experiences lag, causing the simulation time to drift further out of synchronization with
the wallclock time.

Time stamp errors mean that even if an evolved behaviour behaves exactly the same as the
demonstration behaviour, a punishment might still be applied to it because its trajectory was
given incorrect simulation timestamps. The system lag introducing these errors is random and
unpredictable, leading to random and unpredictable variations in the fitness score applied to a
behaviour. Figure 6.5 on page 61 shows how the choice of simulation time scale factor affects the
reliability of the states of the agents while running scenario 2: Feint in Docker containers. Larger
simulation time scale factors especially increase the standard deviation of the agents’ X, Y and Z
coordinates.

These findings reveal that careful consideration must be made when selecting values for the
simulation time scale factor, 𝑟, especially when NGTS is containerized. Scaling factors 𝑟 > 1
drastically increases the probability that NGTS will struggle to keep the execution stable, causing
lags in the simulation. When simulating much faster than in real time, even the same behaviour
is likely to yield significantly different fitness scores over different runs. Thus, the fitness value
calculated after simulating an evolved BTN could be significantly different from what it should
have been had the simulation been running without lag at a lower simulation time scale factor.

With some further experimentation, we found that when running the machine learning system using
the small-scale computer cluster (section 6.1), the simulation could not be run at a time scale factor
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of 𝑟 > 4 without introducing errors. Thirty-two instances running at a time scale factor of 𝑟 = 4
gives a total simulation speed of 128x faster than real-time, which is faster than running on a single
desktop computer, but not a substantial increase. However, it is possible to expand this setup by
adding more machines to the cluster, allowing even more NGTS instances to run in parallel.

Ultimately, this lack of reliability makes it unfeasible to run NGTS simulations much faster than
real-time but instead requires the user to select slower and more stable simulation speeds. The
drawback, of course, is that small values for 𝑟 increase the time needed to evolve a satisfactory
behaviour.
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(a) The path of the demonstration aircraft (red) and the path produced
by the best evolved behaviour model (blue).

(b) The BTN produced by the best genome in experiment 2.

Figure 6.1 The result from one of the three runs of experiment 2 that were conducted to
verify the learning system’s reliability.
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(a) The path of the demonstration aircraft (red) and the path produced
by the evolved behaviour model (blue). The behaviour has reached
a local optimum of only flying in a circle.

(b) The evolved BTN that lead to the aircraft flying in circles.

Figure 6.2 The result from a run of experiment 3, prior to introducing the time decay factor
of the fitness function, which generated a behaviour that caused the aircraft to fly in circles.

58 FFI-RAPPORT 22/02423



(a) The path of the demonstration aircraft (red) and the path produced
by the best evolved BTN (blue).

(b) The BTN produced by the best genome in experiment 3.

Figure 6.3 Figures showing the BTN and its resulting trajectory produced by the best genome
evolved in experiment 3 after introducing the time decay factor to the fitness function.
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Figure 6.4 A plot of the fitness values of each generation’s best genome in experiment 3.
The blue graph shows the trajectory fitness component, the red shows the radar punishment
component, and the green shows them both combined. The evolutionary process stagnates
after 51 generations.
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(a)

(b)

Figure 6.5 A figure showing the standard deviations for the red agent’s X, Y and Z coordinates,
speed and course across 20 simulations of Scenario 2: Feint running in Docker containers.
The figure shows standard deviations for simulation time scale factors of 50 (a) and 8 (b). Note
that the y axes of the different figures are not the same scale.
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7 Discussion

This report describes our work on using an imitation learning algorithm to compose behaviour
transition networks that control fighter aircraft in NGTS, and our experiences related to using the
chosen methods and tools to solve the imitation learning problem throughout this work. This
chapter discusses our findings when performing these experiments, especially the challenges we
encountered while conducting the experiments described in chapter 6. We also aim to propose
possible solutions to the problems we encountered.

The fitness functions and hyperparameters

While performing experiment 1, we added a radar punishment term to the fitness function in order to
force the algorithm to add a Put Sensor in Track node. This could be seen as hard-coding the fitness
function in order to get the expected result. However, in our experience, this might be unavoidable;
a good fitness function needs to be finely tuned in order to yield good behaviours. It can also be
argued that sensor usage is an important part of doctrine, and any good fitness function would need
to consider the pilot’s use of radar as a part of air combat tactics. Although, when using more
complicated scenarios, extensive fine-tuning of fitness functions may prove challenging.

We also found that giving more weight to early parts of the demonstration trajectory than later parts
helped the evolutionary algorithm learn more efficiently (see section 6.4). This was especially true
for Scenario 3: CAP, in which both aircraft stayed near their initial positions, but the modified
fitness function also worked optimizing BTNs for the Feint scenario. In our experience, adding a
time dependence to the fitness function generally improved the evolutionary algorithm’s ability to
learn demonstrated behaviours. However, this cannot be said with certainty, as we did not try to
seek out scenarios where this might not hold true.

We also found that hyperparameters had a large impact on how much time it took for the algorithm
to find satisfactory BTNs, or whether such BTNs could be found at all. To our knowledge, there
exists no analytical way to determine the best hyperparameter values, and so these must be set using
guesswork, trial and error, grid search, or similar. Even when running simulations in a parallelized
Kubernetes solution, BTN-NEAT spent many hours evolving a good behaviour. In order to find
the best hyperparameters, it is necessary to run the full evolution process many times. This means
that in order for a hyperparameter search to be feasible, the simulation system will need to run
significantly faster than the NGTS-based system we used.

We also performed some initial tests of a semantic fitness function, as described in section 3.2.2.2.
The trajectory fitness function used throughout this work is too dependent on both the initial
conditions and the behaviour itself being exactly equal to the demonstration. We believe a fitness
function that focuses on the decisions that affect the aircraft trajectory, rather than exactly where
it is at a given time, has the potential to provide more appropriate fitness values, and can thus be
used in a larger variety of scenarios. However, we could not get our initial semantic fitness function
to work as expected and did not have enough time to experiment further. We think this kind of
approach could be a better way forward than only employing a trajectory-based fitness function.
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NGTS for machine learning purposes

Over the course of our work, we gradually realised that NGTS was not well suited for our use in
machine learning. We had no access to any Application Programming Interfaces (APIs) or Software
Development Kits (SDKs) and had to reverse engineer several of the commands used to remote
control it. Additionally, without an API to directly control simulated entities, the only way to control
behaviours was through generating BTNs.

NGTS has a network plugin to support HLA, but we could not get this to work, forcing us to use
DIS. The biggest disadvantage of DIS was that there was no way to annotate data messages with
the simulation time at which they were valid. This meant that lag in the system could lead to
inconsistent fitness scores (see section 6.5).

Additionally, NGTS could not run directly under Linux and running it under Wine led to a substantial
loss of performance. Even when running on a powerful Windows desktop computer, the maximal
simulation time scale factor achievable was about 50. This is too slow for machine learning
algorithms, where it might be necessary to run a scenario thousands or tens of thousands of times.

Nevertheless, this does not mean that NGTS cannot be used for machine learning purposes if given
the right conditions, by which we mean having access to its API and SDK. As mentioned in section
2.5, previous work has applied NGTS in combination with dynamic scripting to learn behaviour
scripts converted to BTNs [50]. Moreover, [59] uses NGTS to control opposing CGF using BTNs
in the AGENT testbed, which was designed to evaluate the performance of AI behaviours for use
with pilot training. NGTS contains a large collection of possibly suitable scenarios and behaviours.
Besides, the system offers an efficient way to manually create new scenarios and agent behaviours
using its built-in BTN design tool.

The machine learning method
Because of the aforementioned restrictions of NGTS, we were only able to control simulated
entities using BTNs. Only a subset of machine learning methods, such as our modified BTN-NEAT
algorithm, is suitable for generating BTNs. In contrast, the latest developments in reinforcement
learning and imitation learning centre around deep neural networks. However, while we acknowledge
that other suitable machine learning methods for evolving BTNs might exist, we did not have time
to investigate such alternatives, particularly because testing several algorithms would have taken too
much time given our current system with NGTS. Had we managed to reduce the optimization time
further, a comparison between other machine learning methods for learning BTNs could have been
made.

The system architecture
Our final system architecture was based on running both the machine learning algorithm and
simulation systems in Docker containers in a Kubernetes cluster. This solution proved to be
very portable, as we could easily move and run Docker containers on new hardware. It was also
versatile and scalable: the number of simulations to run in parallel could be controlled by a single
configuration variable, and the Kubernetes cluster would automatically start and control the correct
amount of containers.

FFI-RAPPORT 22/02423 63



The drawback to using a system like this is that it requires a much larger amount of initial
configuration than simply running systems manually on a single computer. It also requires a
system architecture that is compatible with available containerization technology, meaning that a lot
more consideration needs to be put into system design. Finally, maintaining and running Docker
containers and Kubernetes clusters requires specialized knowledge.

Despite these drawbacks, we think the scalability and portability gained by making the system
container-based outweigh the additional work required. We will almost certainly use Docker and
Kubernetes in future ML projects.
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8 Conclusion and future work

The simulation-based training of fighter pilots may become more efficient if the instructors and
subject matter experts are relieved of having to control friendly and hostile players manually. This
would instead allow them to focus more on the educational aspects of pilots in training. Artificially
intelligent pilots may provide this function to the instructor if they act realistically concerning
military doctrines, tactics, techniques, and operations. This report summarizes work on using
the simulation system Next Generation Threat System combined with imitation learning to make
agents learn to act in accordance with demonstrated air combat behaviour. The machine learning
algorithm used was a modified version of the neuroevolution of augmenting topologies (NEAT)
method, which we named BTN-NEAT.

The BTN-NEAT algorithm is an evolutionary algorithm, which creates a population of behaviours,
evaluates the fitness of each individual in the population, and combines and mutates traits from the
best-performing individuals to create a new generation of behaviours. As the goal was to imitate a
demonstrated behaviour, an individual behaviour’s fitness score depended on its ability to imitate the
movements and sensor usage of the demonstrator aircraft. Each generated behaviour was simulated
in NGTS in order to evaluate its fitness. Simulations were run in parallel across multiple CPUs
using the Docker and Kubernetes virtualization technologies in order to reduce the time needed to
find the optimal behaviour.

The BTN-NEAT algorithm managed to create behaviours that were judged to be sufficiently similar
to the demonstration behaviours exhibited across three different scenarios. However, the algorithm
spent more time finding satisfactory behaviour than expected. The scenarios also only involved
simple one-versus-one engagements, and it remains to be seen how well BTN-NEAT will perform
given more complex scenarios.

While conducting the experiments, we identified problems introduced by lag when running NGTS
at high time scale factors. Combined with the lack of time management when logging aircraft
data, this results in the timestamps captured not necessarily coinciding with the simulation time
at which the data was valid. This was especially true when running NGTS at large time scale
factors. Even an aircraft behaving identically to the demonstrated behaviour might be penalized
when evaluated because the lag might cause the timestamps of its logged trajectory to differ from
the actual simulation time. This finding forced us to reduce the simulation time scale factor to
improve consistency, and reducing the simulation rate comes at the cost of increased optimization
times. However, we recognize that some of these problems may be dealt with if one has access to
the software development kit, application programming interface, and extensible documentation of
NGTS.

Furthermore, the performance of BTN-NEAT, along with other machine learning algorithms, is
highly dependent on the configured hyperparameter values. Estimating suitable hyperparameter
values that could improve upon learning would involve an additional optimization process, which is
impractical unless the simulation time scale factor is sufficiently large.

In future work, we will explore other simulation systems that allow us to express behaviours in ways
different from BTNs, thus allowing us to explore other machine learning methods. We are especially
interested in exploring imitation and reinforcement learning using deep neural networks. Preferably,
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we will develop a configurable, lightweight simulation system that can simulate air combat entities
and other platforms at large simulation time scale factors. This simulation should also support time
management and parallel execution using containers. Increased simulation speeds will allow us to
integrate hyperparameter optimization methods as part of a new machine learning system.
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